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(a) State Stein’s lemma and give its proof.

(b) Define the total variation distance between two PMFs P,Q on a discrete alphabet
A, and show that, alternatively, it can be expressed as:

‖P −Q‖TV = 2 sup
B⊂A
|P (B)−Q(B)|.

(c) Consider a hypothesis test between two arbitrary PMFs Pn and Qn on An, for
some discrete alphabet A. Denote the probabilities of error associated with an

arbitrary decision region Bn ⊂ An by e
(n)
1 (Bn) and e

(n)
2 (Bn). Let P

(n)
e (Bn) =

e
(n)
1 (Bn) + e

(n)
2 (Bn) denote the “total” error probability. Show that the smallest

possible total error probability that can be achieved by any hypothesis test is equal
to:

1− 1

2
‖Pn −Qn‖TV.

2

(a) State the theorem on error exponents in fixed-rate data compression and prove its
direct part.

(b) Consider a simple-versus-simple hypothesis test between two distributions P and
Q 6= P having full support on a finite alphabet A. For n > 1 and any δ > 0 define
the decision regions B∗n = {xn1 : the type P̂n of xn1 satisfies D(P̂n‖P ) 6 δ}. Show

that the associated probabilities of error e
(n)
1 and e

(n)
2 satisfy, for i = 1, 2,

lim sup
n→∞

1

n
log ei 6 −Di(δ),

for appropriate exponents D1(δ), D2(δ). Identify these exponents and find an
interval of values of δ where they are both strictly positive.
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(a) Define the type of a string xn1 with values in the finite alphabet A. Given a
probability mass function (PMF) Q on A, derive an expression for the probability
Qn(xn1 ) in terms of its type.

(b) Let P be an n-type on a finite alphabet A of size m = |A|. Define the type class
T (P ) and show that:

|T (P )| > (n + 1)−m2nH(P ).

If you give the proof that was given in class, you should also carefully state and
prove any intermediate lemmas used in the proof.

(c) Let B be an arbitrary nonempty subset of An, write P̂xn
1

for the type of a string
xn1 ∈ An, and define the PMF:

PB(a) =
1

|B|
∑

xn
1∈B

P̂xn
1
(a), a ∈ A.

Show that:
|B| 6 2nH(PB).

Justify all the steps in your argument carefully. Hint. Consider Xn
1 to be a random

string drawn uniformly among all elements of B, and let J be a uniformly drawn
index from {1, 2, . . . , n}, independent of Xn

1 .

4

(a) State Kraft’s inequality and prove its converse part.

(b) Suppose that the PMF P of a RV X values in A = {1, 2, . . .} has nonincreasing
probabilities, i.e., P (k + 1) 6 P (k) for all k. Show that, if H(X) < ∞, then
E[logX] <∞.

(c) Show that the geometric distribution with parameter p = 1
µ has maximal entropy

among all distributions on A = {1, 2, . . .} with mean µ > 0.

(d) Let A be a finite alphabet, let f : A → R be a given function, and let v be a
constant such that minx∈A f(x) < v < maxx∈A f(x). Identify the PMF on A that
has maximal entropy among all PMFs P on A with

∑
x∈A P (x)f(x) = v.

[Hint. Recall the form of the minimising P ∗ in Sanov’s theorem in the context of
the Chernoff bound.]
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