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1 Type Ia supernovae are bright stellar explosions used to measure astronomical
distances and the expansion rate of the Universe. Siblings are two or more supernovae
that occur in the same galaxy, and thus have the same true distance from Earth. Because
they have a common astrophysical origin, we might expect supernova siblings within the
same galaxy to be more similar to each other than to supernovae occurring in other
galaxies. Suppose the peak absolute magnitude Ms of a supernova s in galaxy g(s) can
be modelled as,

Ms = M0 + ∆Mg(s) + δMs,

where M0 is the mean absolute magnitude, ∆Mg(s) ∼ N(0, σ2G) is a random magnitude
fluctuation that has the same value for all supernovae s in the same galaxy g(s), and
δMs ∼ N(0, σ2I ) are random magnitude fluctuations that are independent between
supernovae in the same galaxy. Both ∆Mg(s) and δMs are independent between supernovae
in different galaxies. Suppose the variances σ2G and σ2I are known.

The true absolute magnitude Ms is related to the true apparent magnitude ms via
the true distance modulus µs, which is a logarithmic measure of the true distance ds:
ms = Ms + µs. The definition of the distance modulus is µs = 25 + 5 log10[ds Mpc−1],
where Mpc is a megaparsec. Assume astronomers observe the apparent magnitude ms of
each supernova s with negligible measurement error.

Astronomers observe K > 2 sibling supernovae, labelled k = 1, . . . ,K, in a single
nearby galaxy, in which they also observe Cepheid stars to use as independent distance
indicators. The analysis of the Cepheid stars yields an unbiased measurement µ̂ of this
galaxy’s true distance modulus µ with Gaussian measurement error with variance σ2µ.

They also observe a much larger (“Hubble Flow”) set of N supernovae, labelled
i = 1, . . . , N , which are much further away, so the Cepheids stars cannot be observed in
their galaxies. However, they are far enough away that they participate in the smooth,
overall expansion of the Universe. Each supernova i in this set follows the Hubble law,
the linear relation between their recession velocities vi = c zi and their distances di:
di = c zi/H0, where c is the speed of light and zi is the redshift. Assume the redshift
is measured exactly for each supernova in this set. In this set, only one supernova is
observed in each galaxy, and every supernova is independent. The units of the Hubble
constant H0 are km s−1 Mpc−1. Define h ≡ H0/(100 km s−1 Mpc−1), θ ≡ 5 log10 h, and
α = 5/ ln 10. In each part below, show all steps.

(a) Derive the covariance and correlation between the absolute magnitudes Ms of any
two siblings (s, s′) in the calibrator galaxy. What is the total variance σ2tot = Var[Ms]
for any supernova s?

(b) Derive the likelihood function L(M0, θ) using all the data of the calibrator set
{mk}, µ̂ and the Hubble Flow set {mi, zi}.

(c) Derive the maximum likelihood estimators M̂0, θ̂. Derive the bias and variance of
each, and compare Var[θ̂] to the Cramér-Rao bound.

(d) What is the maximum likelihood estimator ĥ for h? Approximate the fractional
variance Var[ĥ/h] to lowest order in σ2θ ≡ Var[θ̂]. In which of the following cases is
the fractional variance smaller: (i) σG = σtot, σI = 0, or (ii) σG = 0, σI = σtot?
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2 Consider a quasar whose stochastic brightness over time y(t) can be modelled as a
realisation of a Gaussian process,

y(t) ∼ GP(µ, k(t, t′)),

with prior mean level µ and a symmetric, stationary covariance kernel k(t, t′). An
astronomer has measured the brightness of the quasar at times t1 and t2 > t1, with
negligible measurement error, yielding y1 ≡ y(t1) and y2 ≡ y(t2). Denote the kernel values
for indexed times as Rij ≡ k(ti, tj) and let R ≡ k(0, 0). In all parts below, show all steps.

(a) We wish to predict the quasar’s brightness y3 = y(t3) at a future third time t3 > t2.
Under what condition(s) is y3 conditionally independent of y1 given y2? Under
this condition(s), derive and fully simplify the posterior predictive distribution
P (y3| y2, y1), and posterior predictive mean and variance. Explicitly demonstrate
that they are independent of y1 and t1.

(b) Henceforth, consider covariance kernels of the form,

kτ (t, t
′) = exp(−|t− t′|η/τη),

where τ > 0 is a characteristic timescale. For which value of η does the conditional
independence in part (a) hold? Justify your answer. For this value of η and
covariance kernel, derive and fully simplify explicit expressions for the posterior
predictive mean and variance of y3 given the observed data. Derive their limiting
values as t3 →∞.

(c) An astronomer now additionally observes y3 = y(t3) without measurement error.
For the value of η found in part (b), derive and fully simplify an expression for the
likelihood function P (y| t, µ, τ), where y = (y1, y2, y3)

T and t = (t1, t2, t3)
T , in the

form of a product of three univariate probability densities. Assuming τ is known,
derive and fully simplify the maximum likelihood estimator µ̂ for µ. Is µ̂ unbiased?
Justify your answer.
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3 Suppose stars of a particular type have intrinsic absolute magnitudes and colours
that are drawn from a Gaussian population distribution. For a random star s, its intrinsic
absolute magnitude Ms and intrinsic colour cs are drawn from a correlated population
distribution P (Ms, cs), which can be expressed conditionally as:

cs ∼ N(c0, σ
2
c ), Ms| cs ∼ N(M0 + β cs, σ

2
M ),

where M0, c0, β, σ
2
M , and σ2c are hyperparameters. However, the stellar light is modified

by interstellar dust along the line-of-sight from the star to the Earth before it is observed.
The effect Es > 0 of interstellar dust is to dim (increase) the magnitude, M̃s = Ms +REs
and redden (increase) the colour c̃s = cs +Es. The hyperparameter R is a property of the
dust. The reddening Es is drawn from an independent exponential distribution,

P (Es| τ) = τ−1 exp(−Es/τ),

for Es > 0, and zero otherwise, with scale hyperparameter τ . In each part below, show all
steps.

(a) Suppose all hyperparameters are known. Derive and fully simplify the conditional
probability density P (Es| c̃s) of the reddening Es given a star’s dusty apparent colour
c̃s. Derive the colour-magnitude relation, i.e. the conditional expectation E[M̃s| c̃s]
of the dusty absolute magnitude M̃s as a function of a given dusty apparent colour
c̃s. What are the asymptotic slopes of this relation as c̃s → −∞ and as c̃s → +∞?

[Note that a random variable x with a truncated Gaussian density with location and
scale parameters µ, σ and a lower truncation at x = 0 has a density function:

TN(x|µ, σ2) =
φ((x− µ)/σ)

σΦ(µ/σ)

for x > 0 and zero otherwise. It has expectation value E[x] = µ+ σφ(µ/σ)/Φ(µ/σ),
where φ(y) ≡ N(y| 0, 1) and Φ(y) ≡

∫ y
−∞ φ(t) dt. For y � 0, φ(y)/Φ(y) ≈ −y ].

(b) Henceforth, suppose all hyperparameters are unknown, and the dusty absolute
magnitude M̃s and apparent colour c̃s are measured without error for a sample
of N stars, labelled s = 1, . . . , N . Adopt independent, flat improper hyperpriors on
each of M0, c0, β and R, and independent, flat positive improper hyperpriors on
each of σ2M , σ2c , and τ . For the full sample of N stars, write down the unnormalised
posterior probability density P ({Es},M0, c0, β, σ

2
M , σ

2
c , R, τ |{ds}), where the data

are ds = {M̃s, c̃s}. Draw the corresponding directed acyclic graph.

(c) Construct an MCMC algorithm to sample this joint posterior density by deriving
a sequence of proposed moves that are always accepted. Specify the order of your
sequence. You may assume you have access to functions that generate random draws
from these probability densities:

(1) Gaussian: N(x|µ, σ2),
(2) truncated Gaussian: TN(x|µ, σ2),
(3) scaled inverse χ2: Inv-χ2(x| ν, b2) ∝ x−(ν/2+1)e−νb

2/(2x), for x > 0 and zero
otherwise, for scale parameter b and degrees of freedom ν.
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(a) Consider a general Bayesian inference problem with observed data y, parameter
θ, likelihood function P (y| θ) and a proper prior P (θ). We wish to compute the
evidence or marginal likelihood Z ≡ P (y) =

∫
P (y| θ)P (θ) dθ. Assume P (y| θ) > 0

for all possible values of y and θ. In each part below, show all steps.

(i) Suppose you have m independent, random samples from the posterior distri-
bution, θi ∼ P (θ| y), for i = 1, . . . ,m. Consider the estimator,

Î ≡ 1

m

m∑

i=1

P (y| θi)−1.

Compute Eθ|y[Î], where the expectation is taken with respect to the posterior

density P (θ| y). How might you use Î to estimate Z?

(ii) Henceforth, suppose the sampling distribution of the data is y ∼ N(θ, σ2)
and the proper prior is θ ∼ N(0, τ2). The measurement variance σ2 and the
prior variance τ2 are known. Derive and fully simplify the posterior density
P (θ| y). What are the posterior mean and variance?

(iii) Derive the expectation of the estimator, Eθ|y[Î], with respect to random draws
from the posterior for fixed data y. Fully simplify in terms of y, σ, and τ .

(iv) Derive the variance of the estimator, Varθ|y[Î], for fixed data y and τ < σ.
What about for τ > σ? Comment on the suitability of this estimator in the
typical case where the prior is more diffuse than the likelihood.

(b) We wish to compare two probabilistic models for data D: M0 with parameter φ,
and M1 with parameters φ and ψ. The more complex model M1 reduces to the
simpler model M0 in the special case of ψ = 0. Suppose further that the proper
prior under M1 is separable, P (φ, ψ|M1) = P (φ|M1)P (ψ|M1), the proper prior
for φ is the same under each model, and all priors are nonzero for every parameter
value. Show that the Bayes factor between the two models reduces to:

B01 =
P (D|M0)

P (D|M1)
=
P (ψ| D,M1)

P (ψ|M1)

∣∣∣∣
ψ=0

.
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