MATHEMATICAL TRIPOS Part III

Thursday, 2 June, $2022 \quad 9{:}00 \ {\rm am}$ to $11{:}00 \ {\rm am}$

PAPER 208

CONCENTRATION INEQUALITIES

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt **ALL** questions. There are **THREE** questions in total.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

(a) Let X be a real-valued random variable such that $\mathbb{E}X = 0$. Suppose that for some $\nu > 0$,

$$\operatorname{Ent}(e^{\lambda X}) \leqslant \frac{\lambda^2 \nu}{2} \mathbb{E} e^{\lambda X} \quad \text{for all } \lambda \in \mathbb{R}.$$

Show that X is sub-Gaussian with variance parameter ν .

(b) Prove a converse of the above statement: If X is a real-valued random variable with $\mathbb{E}X = 0$ and X is sub-Gaussian with variance parameter $\nu/4$, then

$$\operatorname{Ent}(e^{\lambda X}) \leqslant \frac{\lambda^2 \nu}{2} \mathbb{E} e^{\lambda X} \quad \text{for all } \lambda \in \mathbb{R}.$$

[Hint: $\operatorname{Ent}(e^{\lambda X})/\mathbb{E}e^{\lambda X} = \mathbb{E}[Z \log Z]$ for $Z = e^{\lambda X}/\mathbb{E}e^{\lambda X}$. Use the concavity of the logarithm and Jensen's inequality.]

 $\mathbf{2}$

- (a) Let $Z = f(X_1, \ldots, X_n)$, where X_1, \ldots, X_n are independent random variables taking values in \mathcal{X} and $f : \mathcal{X}^n \to \mathbb{R}$ is a square-integrable function. State three equivalent forms of the Efron-Stein inequality for bounding $\operatorname{Var}(Z)$.
- (b) Consider the setting in part (a). Explain what it means for f to satisfy the boundeddifferences property. Derive a bound on Var(Z) when f satisfies the boundeddifferences property.
- (c) Let X_1, \ldots, X_n be independent random variables supported on the two-point set $\{-1, 1\}$. Let $A \in \mathbb{R}^{n \times m}$ be a fixed $n \times m$ matrix, and define

$$Z = \max_{1 \le \ell \le m} \sum_{k=1}^n X_k A_{k,\ell}.$$

Show that

$$\operatorname{Var}(Z) \leqslant \sum_{k=1}^{n} \left(\max_{1 \leqslant \ell \leqslant m} |A_{k,\ell}| \right)^2.$$

(d) Consider the setting in part (c), with the additional assumption that the random variables X_1, \ldots, X_n are i.i.d. and uniformly distributed on $\{-1, 1\}$. Let X'_1, \ldots, X'_n be independent copies of X_1, \ldots, X_n . For $1 \leq i \leq n$, let

$$Z'_{i} = \max_{1 \leq \ell \leq m} \left(\sum_{k \neq i} X_{k} A_{k,\ell} + X'_{i} A_{i,\ell} \right).$$

Show that

$$\operatorname{Var}(Z) \leq 2 \max_{1 \leq \ell \leq m} \left(\sum_{k=1}^{n} A_{k,\ell}^2 \right).$$

[Hint: Let ℓ^* be the (random) index such that $Z = \sum_{k=1}^n X_k A_{k,\ell^*}$. Show that $(Z - Z'_i)^2_+ \leq (X_i - X'_i)^2 A^2_{i,\ell^*}$.]

CAMBRIDGE

3 Consider $m \ge 1$ balls labeled from 1 to m, and $n \ge 1$ bins labeled from 1 to n. The balls are thrown independently and uniformly at random into the bins. For $1 \le j \le m$, let X_j be the label of the bin containing ball j. Let $Z = f(X_1, \ldots, X_m)$ be the number of empty bins.

(a) For $1 \leq i \leq n$, let

$$Z_i = \begin{cases} 1 & \text{if bin } i \text{ is empty,} \\ 0 & \text{otherwise.} \end{cases}$$

Are the Z_i 's independent? Noting that $Z = \sum_{i=1}^n Z_i$, find $\mathbb{E}Z$.

(b) Show that for t > 0,

$$\mathbb{P}(Z - \mathbb{E}Z \ge t) \le e^{-2t^2/m}$$
 and $\mathbb{P}(Z - \mathbb{E}Z \le -t) \le e^{-2t^2/m}$.

(c) For $1 \leq j \leq m$, define the functions $\alpha_j : \{1, 2, \dots, n\}^m \to \{0, 1\}$ as

$$\alpha_j(x_1, \dots, x_m) = \begin{cases} 1 & \text{if ball } j \text{ is the lowest-numbered ball in its bin,} \\ 0 & \text{otherwise.} \end{cases}$$

Prove the following inequality for any $x, y \in \{1, 2, ..., n\}^m$:

$$f(y) - f(x) \leqslant \sum_{j=1}^{m} \alpha_j(x) \mathbb{1}\{x_j \neq y_j\},\$$

where $1\{\cdot\}$ is the indicator function.

(d) Using part (c), show that for t > 0,

$$\mathbb{P}\left(Z - \mathbb{E}Z \geqslant t\right) \leqslant e^{-t^2/(2n)} \quad \text{and} \quad \mathbb{P}\left(Z - \mathbb{E}Z \leqslant -t\right) \leqslant e^{-t^2/(2n)}.$$

[You may use any result from the lectures without proof provided you state it clearly.]

END OF PAPER