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(a) Let X be a real-valued random variable such that EX = 0. Suppose that for some
ν > 0,

Ent(eλX) 6 λ2ν

2
EeλX for all λ ∈ R.

Show that X is sub-Gaussian with variance parameter ν.

(b) Prove a converse of the above statement: If X is a real-valued random variable with
EX = 0 and X is sub-Gaussian with variance parameter ν/4, then

Ent(eλX) 6 λ2ν

2
EeλX for all λ ∈ R.

[Hint: Ent(eλX)/EeλX = E[Z logZ] for Z = eλX/EeλX . Use the concavity of the
logarithm and Jensen’s inequality.]
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(a) Let Z = f(X1, . . . , Xn), where X1, . . . , Xn are independent random variables taking
values in X and f : X n → R is a square-integrable function. State three equivalent
forms of the Efron-Stein inequality for bounding Var(Z).

(b) Consider the setting in part (a). Explain what it means for f to satisfy the bounded-
differences property. Derive a bound on Var(Z) when f satisfies the bounded-
differences property.

(c) Let X1, . . . , Xn be independent random variables supported on the two-point set
{−1, 1}. Let A ∈ Rn×m be a fixed n×m matrix, and define

Z = max
16`6m

n∑

k=1

XkAk,`.

Show that

Var(Z) 6
n∑

k=1

(
max
16`6m

|Ak,`|
)2

.

(d) Consider the setting in part (c), with the additional assumption that the random
variables X1, . . . , Xn are i.i.d. and uniformly distributed on {−1, 1}. Let X ′1, . . . , X

′
n

be independent copies of X1, . . . , Xn. For 1 6 i 6 n, let

Z ′i = max
16`6m


∑

k 6=i

XkAk,` + X ′iAi,`


 .

Show that

Var(Z) 6 2 max
16`6m

(
n∑

k=1

A2
k,`

)
.

[Hint: Let `∗ be the (random) index such that Z =
∑n

k=1XkAk,`∗. Show that
(Z − Z ′i)

2
+ 6 (Xi −X ′i)

2A2
i,`∗.]
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3 Consider m > 1 balls labeled from 1 to m, and n > 1 bins labeled from 1 to n. The
balls are thrown independently and uniformly at random into the bins. For 1 6 j 6 m,
let Xj be the label of the bin containing ball j. Let Z = f(X1, . . . , Xm) be the number of
empty bins.

(a) For 1 6 i 6 n, let

Zi =

{
1 if bin i is empty,

0 otherwise.

Are the Zi’s independent? Noting that Z =
∑n

i=1 Zi, find EZ.

(b) Show that for t > 0,

P (Z − EZ > t) 6 e−2t2/m and P (Z − EZ 6 −t) 6 e−2t2/m.

(c) For 1 6 j 6 m, define the functions αj : {1, 2, . . . , n}m → {0, 1} as

αj(x1, . . . , xm) =

{
1 if ball j is the lowest-numbered ball in its bin,

0 otherwise.

Prove the following inequality for any x, y ∈ {1, 2, . . . , n}m:

f(y)− f(x) 6
m∑

j=1

αj(x)1{xj 6= yj},

where 1{·} is the indicator function.

(d) Using part (c), show that for t > 0,

P (Z − EZ > t) 6 e−t2/(2n) and P (Z − EZ 6 −t) 6 e−t2/(2n).

[You may use any result from the lectures without proof provided you state it clearly.]
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