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1 Statistics in Medical Practice
Vitamin D has been proposed as a potential causal determinant of mortality risk.

Observational epidemiological studies have consistently found that low concentrations of
circulating 25-hydroxyvitamin D [25(OH)D] (a substance found in blood that is used as a
clinical indicator of vitamin D status) are associated with higher risk of all-cause mortality.
However, several large randomized trials of vitamin D supplementation on mortality risk
have reported null results.

1. What does it mean for vitamin D to be a “causal determinant of mortality risk”?
2. Why may observational studies and randomized trials provide conflicting results?

Provide two reasons with justifications.

An efficient approach for assessing the potential causal effect of vitamin D sup-
plementation is Mendelian randomization, the use of genetic variants as instrumental
variables to assess evidence for the effect of an exposure on an outcome. In a recently
published paper, the authors constructed two candidate instruments: a focused instru-
ment and a polygenic instrument. The focused instrument is a weighted sum of genetic
variants in four gene regions that are known to relate to vitamin D metabolism. The
polygenic instrument is a weighted sum of 71 genetic variants that are associated with
25(OH)D levels, but their biological relevance to the exposure is less clear. Associations
of the focused and polygenic instruments with various traits are shown in Figure 1.

3. How do the plots in Figure 1 help understand the validity of the candidate
instruments? Which candidate instrumental variable would you prefer?

It is suspected that the causal effect of vitamin D supplementation is stronger for
individuals with low levels of 25(OH)D. The authors considered stratifying the population
on 25(OH)D levels and calculating instrumental variable estimates for strata of the
population, by estimating associations of the focused instrument with 25(OH)D and
mortality risk for individuals with 25(OH)D below 25 nmol/L, with 25(OH)D between
25 and 50 nmol/L, and so on.

4. Why could stratifying the population by conditioning on the exposure in this way
lead to the instrumental variable assumptions being violated? It may help to draw
a directed acyclic graph of the instrumental variable assumptions.

Instead, the authors first regressed 25(OH)D levels on the focused instrument,
took the residual from this regression, centred the residual to have the same population
mean as the original 25(OH)D measurement, and stratified on that variable, referred
to as “residual 25(OH)D”. They estimated associations of the focused instrument with
25(OH)D levels and with mortality risk in each stratum, and used these associations to
calculate instrumental variable estimates, representing odds ratios for all-cause mortality
scaled to a 10 nmol/L increase in 25(OH)D concentrations. Instrumental variable
estimates in the population as a whole, and in each stratum of the population are shown
in Figure 2.

5. Provide a brief explanation of the results of Figure 2. What do these results tell us
about the potential causal effect of vitamin D supplementation?

6. The dataset used for this analysis had information on several other risk factors and
disease outcomes. Provide and justify two ways that the authors could make their
causal claims more convincing without collecting additional data.

[QUESTION CONTINUES ON THE NEXT PAGE]

Part III, Paper 207



3

Figure 1. Estimates of associations of the candidate instruments with various
traits. Error bars represent 95% confidence intervals (CI). Estimates for all continuous
traits expressed in standard deviation units. Estimates for the binary traits (smoking
and Type 2 diabetes status) are log odds ratios. Associations are scaled to a 10 nmol/L
increase in genetically-predicted 25(OH)D concentrations.

Focused instrument:

Polygenic instrument:

[QUESTION CONTINUES ON THE NEXT PAGE]
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Figure 2. Mendelian randomization estimates for mortality in overall population
and in strata defined by residual 25(OH)D concentrations. Estimates (95% confidence
intervals) represent odds ratios per 10 nmol/L higher genetically-predicted concentration
of 25(OH)D.
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2 Statistics in Medical Practice
A clinical trial was carried out of a new treatment designed to control the symptoms

of a particular disease. Patients with the disease were randomised with equal probability to
receive either the new treatment or an existing treatment. One month after randomisation,
patients were asked to attend a clinic to have their symptoms assessed and classified as
either controlled (which is a treatment success) or uncontrolled (a treatment failure). Let
Z = 1 for patients randomised to the new treatment and let Z = 0 for patients randomised
to the existing treatment. Let Y = 1 for patients whose symptoms were controlled at one
month after randomisation, and Y = 0 for patients whose symptoms were uncontrolled.

The following table shows the numbers of patients with controlled and uncontrolled
symptoms in the two treatment groups.

Z Y Patients

0 0 80
0 1 120

1 0 110
1 1 110

Let φ0 = P (Y = 1 | Z = 0) and φ1 = P (Y = 1 | Z = 1). Let α = φ1 − φ0 denote
the treatment effect at one month after randomisation.

1. Write down the likelihood function for the observed data on these 420 patients in
terms of φ0 and φ1.

2. Write down the maximum likelihood estimates (MLE) of φ0 and φ1. Verify that the
MLE of α equals − 1

10 . (Note that you are not expected to derive these MLEs.)

In addition to the 420 patients represented in the table, there were 70 patients in the
study who did not attend the clinic one month after randomisation, and so have a missing
value of Y . Of these 70 patients, 50 had been randomised to the existing treatment and
20 had been randomised to the new treatment. The MLEs of φ0, φ1 and α that you have
just calculated are called ‘complete-case’ MLEs, because they only use the data on the
420 ‘complete cases’ (i.e. patients whose data on Z and Y are observed).

3. Briefly explain why the complete-case MLE of α may be biased.

4. Carefully derive the observed-data likelihood for the data on all 490 patients in terms
of φ0 and φ1. Verify that the observed-data MLE of α (i.e. the MLE calculated from
this likelihood) is equal to the complete-case MLE (i.e. − 1

10).

[QUESTION CONTINUES ON THE NEXT PAGE]
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The 420 patients who attended the clinic one month after randomisation were asked
to attend the clinic again five months later, and 300 of these patients did so. The 70
patients who did not attend the clinic one month after randomisation were not asked to
attend the clinic again. Let W = 1 for patients whose symptoms were controlled at six
months after randomisation, and W = 0 for patients whose symptoms were uncontrolled.
The following table shows the numbers of patients with controlled and uncontrolled
symptoms at one month and six months after randomisation.

Z Y W Patients

0 0 0 20
0 0 1 20
0 1 0 15
0 1 1 75
0 0 missing 40
0 1 missing 30
0 missing missing 50

1 0 0 50
1 0 1 30
1 1 0 30
1 1 1 60
1 0 missing 30
1 1 missing 20
1 missing missing 20

Let ψ0 = P (W = 1 | Z = 0) and ψ1 = P (W = 1 | Z = 1). Let β = ψ1 − ψ0 denote
the treatment effect at six months after randomisation.

5. State whether the data on (Z, Y,W ) are monotone missing.

6. Explain in terms of dropout what is meant by the assumption that the data on
(Z,X,W ) are missing at random.

7. Suppose that the data (Z,X,W ) are assumed to be missing at random and that
(improper) multiple imputation is carried out to estimate φ0, φ1, α, ψ0, ψ1 and β.
Suppose this is done using the following (saturated) imputation models:

P (Y = 1 | Z) = γ00 + γ01Z

P (W = 1 | Z, Y ) = γ10 + γ11Z + γ12Y + γ13ZY

where γ00, γ01, γ10, γ11, γ12 and γ13 are unknown parameters. It can be shown that
the resulting estimators of φ1 and ψ1 converge to the values 1

2 and 25
48 , respectively,

as the number of imputed datasets tends to infinity.

(a) Calculate the values to which the estimators of φ0 and α converge.

(b) Calculate the values to which the estimators of ψ0 and β converge.
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3 Statistics in Medical Practice
An infectious disease is seeded in a closed population of size N , and is such that

infected individuals are immediately and forever infectious.

(a) Draw a simple compartmental structure representing the transmission process of
this disease, using an appropriately defined transmission rate parameter β.

(b) Write down a system of ordinary differential equations governing the transmission
dynamics of this disease, including the support of any parameters.

(c) Assume that initially, there are θ
θ+1N susceptible individuals and 1

θ+1N individuals
infectious with the virus. Show that the rate of change in the number of infectious
individuals, Λ(t), can be written as a function of time by:

Λ(t) =
θNβe−βt

(1 + θe−βt)2

[Note: Depending on how you have answered (a) a scaling of the β parameter may
be required.]

(d) Obtain the value of Λ(t) at its maximum.

(e) Simplify the equation for Λ(t), using the time at the maximum as the origin.
Comment briefly on the shape of the curve traced out by Λ(t).

The dynamics of an epidemic with removal, such as HIV in the anti-retroviral treatment
era, in which sufficient treatment can lead to viral suppression (and hence removal of a
patient from the infectious population), can be represented by a SIR model given by the
equations

dS(t)

dt
= −βS(t)I(t)

dI(t)

dt
= βS(t)I(t)− γI(t)

dR(t)

dt
= γI(t),

for β, γ > 0. Assume that initially there are no removed individuals and that initially the
number of infectious individuals is very small, among the total (closed) population of size
N .

(f) Show that the peak number of removals per unit time occurs when S(t) = γ/β.

(g) Evaluate I and R at the time of the peak in removals, in terms of the initial number
of susceptible individuals and the basic reproduction ratio R0.

(h) Show that a relation for the final size of the epidemic, R(∞), in terms of R0 is

R (∞) ≈ S(0)

R0
log

S (0)

S (0)−R (∞)
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4 Analysis of Survival Data
Derive the log-rank test for comparing two time-to-event distributions. (You may

use the result that if n individuals are randomly allocated to the four cells of a two-by-
two contingency table, such that (i) the row totals p1, p2 and the column totals q1, q2 are
fixed and (ii) the probability of an individual being allocated to a particular row does not
depend on the column to which that individual has been allocated, then - defining U as
the number of individuals allocated to the cell in the first row and first column - U has
expectation p1q1/n and variance p1p2q1q2/n

2/(n− 1).)

The table shows the survival in months of ten different patients after two different
treatments for cancer (artificial data):

Treatment Survival Time

A 1, 2, 3+, 3+, 5
B 1+, 5, 5, 7+, 10+

where a plus sign indicates a right censored value.

The following parts of the question refer to this dataset.

(a) Calculate the expected number of observed deaths under Treatment A, under the
null hypothesis of no difference in time-to-death distribution between Treatments A
and B. Why is this expected number not half of the total number of deaths?

Calculate a measure of the relative risk of Treatment A relative to Treatment B.

(b) Write down the maximum likelihood estimator for the hazard when the time-to-event
distribution is exponential.

Assuming the time-to-event distribution is exponential for both Treatments A and
B, show that the maximum likelihood estimate of the hazard ratio (Treatment A
relative to Treatment B) is equal to 3.

(c) Write down the Nelson-Aalen estimator for the integrated hazard function, assuming
that all event times are distinct. Suggest a modification for the estimator when
there are tied event times.

Calculate the ratio of the Nelson-Aalen estimates of the integrated hazards (Treat-
ment A relative to Treatment B) at month 5.

(d) How do the three ratios calculated in parts (a), (b) and (c) compare with one
another?
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5 Analysis of Survival Data

(a) The independent continuous time-to-event random variables Ti for two individuals
i ∈ {1, 2} have densities fi(t) and survivor functions Fi(t).

(i) Show that, in the absence of censoring, the probability that individual 1 has
an event before individual 2 is given by:

P[T1 < T2] =

∫ ∞

0
f1(t
′)F2(t

′) dt′ .

(ii) Suppose that both individuals are subject to a fixed censoring time c. The
event times t1, t2 are described as informative if it is possible to determine
which individual was first to have an event. Show that the pair t1, t2 is
informative if t1 6= t2 and min(t1, t2) 6 c.

Find the probability that T1 < T2 given that the pair of event times are
informative.

(b) Consider the case when T1, T2 have exponential distributions with rate parameters
λ1, λ2 respectively.

(i) Show that, when the two individuals are subject to a common fixed censoring
time c:

P[T1 < T2|T1, T2 are informative] =
λ1

λ1 + λ2
.

(ii) Explain why this result generalises to the two individuals each being subject
to a random censoring time distribution.

(c) Consider now the case when the ith individual is subject to integrated hazard
φiH0(t) where the φi are constants and H0 is a baseline integrated hazard function
with inverse H−10 .

(i) Define time-to-event variable Ui by Ui = H0(Ti). What is the distribution of
Ui?

(ii) Deduce that:

P[T1 < T2|T1, T2 are informative] =
φ1

φ1 + φ2
.

when the two individuals each are subject to a random censoring time
distribution. c.

(d) What is the connection between this question and competing risks methodology?
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6 Analysis of Survival Data
What is a proportional frailty model? Consider a proportional frailty model with

frailty variable U and baseline hazard h0(t). Obtain an expression for the unconditional
(population) survivor function in terms of the density g(u) of U and the baseline integrated
hazard. Show that, without loss of generality, if U has a finite mean then U can be defined
such that EU = 1. Why would you want to do so?

Let g(u) = exp(−u).

(a) Derive an expression for the unconditional hazard h̄(t) as a function of the baseline
integrated hazard.

(b) Derive the density g(u, t) of U at time t over individuals who have not had an event
by t.

(c) What is the expectation of U at time t over individuals who have not had an event
by t? Comment on how this expectation changes with t.

(d) Obtain h̄(t) directly from your answer to part (c).

END OF PAPER
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