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1 Let H be a reproducing kernel Hilbert space (RKHS) of functions on an input space
X with reproducing kernel k. Let (xi, Yi)

n
i=1 be i.i.d. and satisfy

Yi = f0(xi) + εi.

Here, f0 ∈ H with ‖f0‖H 6 1, and writing X ∈ X n for the collection x1, . . . , xn, we have
that ε := (ε1, . . . , εn) satisfies E(ε |X) = 0 and E(εεT |X) = σ2I. For a tuning parameter
value λ > 0, write down the objective function minimised over f ∈ H to produce the
kernel ridge regression estimate f̂λ ∈ H.

Let K ∈ Rn×n be the matrix with ijth entry Kij = k(xi, xj) and let the eigenvalues
of K/n be given by µ̂1 > µ̂2 > · · · > µ̂n (we assume µ̂1 > 0). Write down a closed form
expression for (f̂λ(xi))

n
i=1 ∈ Rn involving K, λ and Y := (Y1, . . . , Yn)T .

Show that (f0(xi))
n
i=1 = Kα for some α ∈ Rn, and moreover that ‖f0‖2H > αTKα.

Using the fact (which you need not prove) that

1

n

n∑

i=1

E
(
[f0(xi)− E{f̂λ(xi) |X}]2 |X

)
6 λ

4n
,

show that

1

n

n∑

i=1

E[{f0(xi)− f̂λ(xi)}2 |X] 6 σ2

λ

n∑

i=1

min(µ̂i/4, λ/n) +
λ

4n
. (*)

Assume that there exists a non-negative sequence µ1, µ2, . . . be such that
∑∞

j=1 µj <
∞ and

E

(
n∑

i=1

min(µ̂i/4, γ)

)
6
∞∑

j=1

min(µj/4, γ)

for all γ > 0. Now let λ̂ minimise the r.h.s. of (*) over λ > 0. Show that

1

n

n∑

i=1

E[{f0(xi)− f̂λ̂(xi)}2] 6 inf
γ>0




σ2

nγ

∞∑

j=1

min(µj/4, γ) +
γ

4



 .
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2 Suppose we have null hypotheses H1, . . . ,Hm and associated p-values p1, . . . , pm.
What is the false discovery rate (FDR)?

In all that follows, we will assume that with probability 1, the p-values p1, . . . , pm
are distinct. Describe the Benjamini–Hochberg (BH) procedure.

Suppose I0 is the set of indices of true null hypotheses and m0 = |I0|. Let
p−i ∈ Rm−1 be the vector of p-values with the ith p-value removed. Consider the following
condition.

A: For each i ∈ I0, pi is independent of p−i.

By considering for each i ∈ I0 a modified BH procedure applied to p−i with Ri rejections,
prove that the BH procedure controls the FDR at a given level α when Assumption A
holds.

We say a set D ∈ [0, 1]d is ‘increasing’ if whenever x ∈ D and y ∈ [0, 1]d is such
that yi > xi for all i = 1, . . . , d, then y ∈ D. Explain why the set of p-values in [0, 1]m−1

resulting in at most r− 1 rejections from your modified BH procedure is an increasing set
(i.e. why {Ri 6 r − 1} = {p−i ∈ D} for some increasing set D).

We no longer assume Assumption A, but instead assume Assumption B below.

B: For each i ∈ I0 and any increasing set D ∈ [0, 1]m−1, P(p−i ∈ D | pi 6 x) is non-
decreasing in x ∈ [0, 1].

Prove that the BH procedure controls the FDR at a given level α when Assumption B
holds. [Hint: Aim to use Assumption B to obtain a telescoping sum.]
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3 Suppose data (X,Y, Z) ∈ Rn×Rn×Rn×p is formed of i.i.d. observations (xi, yi, zi) ∈
R × R × Rp for i = 1, . . . , n. We wish to test the null hypothesis H0: x1 ⊥⊥ y1 | z1. Show
that under the null,

E[{x1 − E(x1 | z1)}{y1 − E(y1 | z1)}s(z1)] = 0

where s : Rp → {−1, 1}.
Let εi := xi − f(zi) and ξi := yi − g(zi) where f(·) = E(x1 | z1 = ·) and

g(·) = E(y1 | z1 = ·). Suppose we have an estimator τD of
√
Var(ε1ξ1) such that

τD
p→
√
Var(ε1ξ1), and estimated regression functions f̂ and ĝ formed through regressing

each of X and Y on Z respectively. Let

τN :=
1

n

n∑

i=1

{xi − f̂(zi)}{yi − ĝ(zi)}s(zi).

Show that under H0 and conditions (i)–(iii) below, test statistic T :=
√
nτN/τD has

the property that T
d→ N(0, 1).

(i) We have 0 < Var(ε1ξ1) <∞.

(ii) We have that Var(ε1 | z1) 6 c and Var(ξ1 | z1) 6 c for some c > 0.

(iii) Writing

MSPEf := E

(
1

n

n∑

i=1

{f(zi)− f̂(zi)}2
)

and MSPEg := E

(
1

n

n∑

i=1

{g(zi)− ĝ(zi)}2
)
,

we have MSPEf → 0, MSPEg → 0 and nMSPEfMSPEg → 0.

Now show that even when H0 is not true, we have

E[{x1 − E(x1 | z1)}{y1 − E(y1 | z1)}s(z1)] = E[x1{E(y1 |x1, z1)− E(y1 | z1)}s(z1)].

Consider an alternative (i.e. where H0 does not hold) where x1 and z1 are independ-
ent, Ex1 = 0, Ex21 > 0 and

E(y1 |x1, z1) = x1h(z1) + g(z1)

for some h : Rp → R with Eh(z1) = 0 and E|h(z1)| > 0. Explain why when s is the
constant function always taking the value 1, the test corresponding to T is not expected
to have power against this alternative. Give a choice of s (depending on h) such that we
can expect the resulting test will have power against this alternative.
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4 Consider a regression setting with response vector Y ∈ Rn and design matrix
X ∈ Rn×p related via Y = Xβ0 + ε where ε ∼ Nn(0, I). Suppose non-empty groups
G1, . . . , Gq partition {1, . . . , p}. Write down the group Lasso penalty λP (β) with tuning
parameter λ > 0 and group multipliers m1, . . . ,mq > 0.

Show that for u, v ∈ Rp,

|uT v| 6 max
k=1,...,q

(m−1
k ‖vGk

‖2)
q∑

j=1

mj‖uGj‖2.

(Here vGk
is the sub-vector of v consisting of those components indexed by Gk.)

Fix λ > 0 and let β̂ ∈ Rp be a minimiser of

1

2n
‖Y −Xβ‖22 + λP (β)

over β ∈ Rp. For a non-empty set G ⊆ {1, . . . , p}, let XG be the sub-matrix of X consisting
of those columns indexed by G. Show that on the event Ω := {maxk=1,...,q(m

−1
k ‖XT

Gk
ε‖2) 6

nλ}, we have that
1

n
‖X(β0 − β̂)‖22 6 4λP (β0).

Now suppose |Gj | = r and mj =
√
r for all j (so p = qr). Suppose further that

XT
Gj
XGj = nI for all j. Show that when λ is such that

(nλ2 − 1)2 =
8(A+ 1) log q

r
,

for A > 0 and such that the above is less than 1, we have that P(Ω) > 1 − q−A. [You
may use the facts that the mgf of a χ2

1 random variable is 1/
√

1− 2α for α < 1/2, and
e−α/

√
1− 2α 6 e2α

2
when |α| < 1/4.]
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5 Let Z ∼ Np(µ,Σ
0) with Σ0 positive definite. For a non-empty set A ⊆ {1, . . . , p}, let

ZA be the sub-vector of Z consisting of components indexed by A. Derive the conditional
distribution ZA |ZB = zB, where A and B are non-empty subsets of {1, . . . , p}.

Writing Ω0 = (Σ0)−1 for the precision matrix, show that Var(ZA |ZAc) = (Ω0
A,A)−1

and derive an expression for Cov(Zj , Zk |Z−jk) involving only Ω0
jj , Ω0

kk and Ω0
jk. Here

Ω0
A,A is the submatrix of Ω0 consisting of those rows and columns indexed by A. Hence

or otherwise show that
Zj ⊥⊥ Zk |Z−jk ⇔ Ω0

jk = 0.

[You may use without proof the following facts. Let M ∈ Rp×p be a symmetric positive
definite matrix and suppose

M =

(
P QT

Q R

)

with P and R square matrices. Writing S := P − QTR−1Q, we have that S is positive
definite and

M−1 =

(
S−1 −S−1QTR−1

−R−1QS−1 R−1 +R−1QS−1QTR−1

)
.

]

Suppose x1, . . . , xn are independent random vectors with each xi ∼ Np(µ,Σ
0). Write

X ∈ Rn×p for the matrix with ith row xi and suppose that X has full column rank. Show
that the maximum likelihood estimator for Ω0 minimises

− log det(Ω) + tr(SΩ)

over Ω � 0 (i.e. symmetric positive definite Ω) where

S :=
1

n

n∑

i=1

(xi − X̄)(xi − X̄)T , X̄ :=
1

n

n∑

i=1

xi.

Give the optimisation problem solved by the graphical Lasso estimator Ω̂λ of the
precision matrix with tuning parameter λ > 0.
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6 Let Y ∈ Rn be a vector of responses and X ∈ Rn×p a matrix of predictors. Suppose
that the columns of X have been centred, and that Y is also centred. Consider the linear
model (after centring),

Y = Xβ0 + ε− ε̄1,
where 1 is an n-vector of 1’s and ε̄ := 1T ε/n. Let S := {j : β0j 6= 0}, s := |S| ∈ [1, p− 1]

and N := {1, . . . , p}\S. Define the Lasso estimator β̂ of β0 with regularisation parameter
λ > 0 (here and throughout we suppress the dependence of the Lasso solution on λ).

Write down the KKT conditions for the Lasso and show that

1

n
‖X(β0 − β̂)‖22 6

1

n
|εTX(β̂ − β0)|+ λ‖β0‖1 − λ‖β̂‖1.

Show that on the event

Ω = {2‖XT ε‖∞/n < λ},

we have
1

nλ
‖X(β̂ − β0)‖22 +

1

2
‖β̂N − β0N‖1 <

3

2
‖β0S − β̂S‖1.

Let B := {β ∈ Rp : ‖βN‖1 6 3‖βS‖1}. Suppose there exists κ > 0 such that for all
β ∈ B, we have

κ‖β‖2 6
1√
n
‖Xβ‖2.

Show that on Ω,

‖β0 − β̂‖2 <
3λ
√
s

2κ2
.

Suppose that minj∈S |β0j | > 3λ
√
s/κ2. Give, with justification, a choice of τ such

that on Ω, Ŝτ := {j : |β̂j | > τ} satisfies Ŝτ = S.

END OF PAPER
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