MATHEMATICAL TRIPOS Part III

Tuesday, 7 June, 2022 $\quad 9{:}00~\mathrm{am}$ to 11:00 am

PAPER 204

PERCOLATION AND RELATED TOPICS

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let G be an infinite, locally-finite graph connected graph. Given G, let $\Omega_G = \{0,1\}^{E(G)}$.

- (a) Define the terms cylinder event and increasing cylinder event.
- (b) Let V₁ ⊂ V₂ ⊂ ... ⊂ ⋃_{n≥1} V_n = V(G) be an increasing sequence of subsets of V(G), inducing connected subgraphs G₁, G₂, Define the *free spanning forest* (FSF) μ^F induced on G by this exhaustion, in terms of measures of increasing cylinder events. [You should state clearly any negative association results you use.]
- (c) Prove that the FSF has no finite components almost surely.
- (d) Let T be an infinite tree. Such a tree T is transient if and only if there exists an edge e ∈ E(T) such that both components of T \ e are transient.
 Prove that if T is transient, FSF and WSF on T are not equal in distribution.
 [You may use Wilson's algorithm rooted at infinity without defining it.]

2 For $d \ge 2$, consider the *d*-dimensional integer lattice \mathbb{Z}^d , and set $\Omega := \{0, 1\}^{E(\mathbb{Z}^d)}$. Let \mathbb{P}_p be the percolation product measure on Ω , with edge probability *p*.

(a) Let A be an event invariant under automorphisms of \mathbb{Z}^d .

Prove that $\mathbb{P}_p(A) = 0$ or 1.

[You may use the fact that $\forall \epsilon > 0$, there exists an event *B* that depends on only finitely many edges, such that $\mathbb{P}_p(A \triangle B) < \epsilon$, where the symmetric difference $A \triangle B$ is defined as $(A \setminus B) \cup (B \setminus A)$. You may also use the result that

$$(A \cap \varphi(A)) \triangle (B \cap \varphi(B)) \subset (A \triangle B) \cup (\varphi(A) \triangle \varphi(B)),$$

holds for $A, B \subset \Omega$, and φ an automorphism of \mathbb{Z}^d .]

(b) Let $N_{\infty} \in \{0, 1, ..., \} \cup \{\infty\}$ be the number of infinite open clusters in a configuration. It is known for every $p \in (p_c, 1]$, we have $\mathbb{P}_p(N_{\infty} \ge 1) = 1$. Prove that for every $p \in (p_c, 1]$, one of the following two statements is true:

$$\mathbb{P}_p(N_{\infty} = 1) = 1, \quad \mathbb{P}_p(N_{\infty} = \infty) = 1.$$

(c) For $k \ge 2$, let T_k be the rooted tree in which the root ρ has degree k, and every other vertex has degree k + 1. Now let \mathbb{P}_p denote percolation product measure on the edges of T_k . Show that for every $p \in [0, 1)$, one of the following two statements is true:

$$\mathbb{P}_p(N_\infty = 0) = 1, \quad \mathbb{P}_p(N_\infty = \infty) = 1.$$

- **3** Let $A \circ B$ denote the disjoint occurrence of two events $A, B \in \Omega_G$.
 - (a) State the *BK inequality* for the percolation product measure \mathbb{P}_p , including any conditions on the events.
 - (b) Prove, carefully, that on the *d*-dimensional integer lattice \mathbb{Z}^d , for $d \ge 2$,

 $\mathbb{P}_p(\exists \text{ two open edge-disjoint paths } 0 \leftrightarrow \infty) \leq \theta(p)^2,$

where $\theta(p) := \mathbb{P}_p(0 \leftrightarrow \infty)$ is the percolation probability.

- (c) From now on, assume G is finite. Define the random cluster measure $\mathbb{P}_{\mathrm{FK}(p,q)}$ on Ω_G , with no boundary conditions.
- (d) Let G be the cycle on four vertices, labelled (N, E, S, W) in that order. Consider the limit $p \to 1$, $q(1-p) \to \infty$. Show that

$$\mathbb{P}_{\mathrm{FK}(p,q)}(N \leftrightarrow S) = (1+o(1))\frac{2(1-p)^2q+1}{(1-p)^4q^3+1}.$$

(e) Hence, or otherwise, prove the existence of $p \in (0, 1)$ and $q \ge 1$ and an event $A \subset \Omega_G$ such that

 $\mathbb{P}_{FK(p,q)}(A) < 0.001$ and $\mathbb{P}_{FK(p,q)}(A \circ A \mid A) > 0.999.$

$\mathbf{4}$

The graph $G = \mathbb{Z}^2 \oplus \mathbb{Z}^2$ is constructed by taking two disjoint copies of \mathbb{Z}^2 , and for each labelled vertex $v \in \mathbb{Z}^2$, adding an edge between the two vertices with this label.

(a) Denote by $\mathcal{X} = (X_0, X_1, \ldots)$ a simple random walk on G, with $X_0 = x_0$ fixed. Prove that \mathcal{X} is recurrent.

[You may use the fact that random walk on \mathbb{Z}^2 is recurrent without proof.]

- (b) State the Aldous–Broder algorithm for constructing a uniform spanning tree T on G from \mathcal{X} .
- (c) Given T, let T_1 and T_2 be the subgraphs of T induced on the two copies of \mathbb{Z}^2 which make up the vertex set of G.

Prove that T_1 almost surely contains a connected component of size at least 2022.

(d) Prove that T_1 is almost surely not connected.

END OF PAPER

Part III, Paper 204