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1 Let G be an infinite, locally-finite graph connected graph. Given G, let ΩG =
{0, 1}E(G).

(a) Define the terms cylinder event and increasing cylinder event.

(b) Let V1 ⊂ V2 ⊂ . . . ⊂
⋃

n>1 Vn = V (G) be an increasing sequence of subsets of V (G),

inducing connected subgraphs G1, G2, . . .. Define the free spanning forest (FSF) µF

induced on G by this exhaustion, in terms of measures of increasing cylinder events.

[You should state clearly any negative association results you use.]

(c) Prove that the FSF has no finite components almost surely.

(d) Let T be an infinite tree. Such a tree T is transient if and only if there exists an
edge e ∈ E(T ) such that both components of T \ e are transient.

Prove that if T is transient, FSF and WSF on T are not equal in distribution.

[You may use Wilson’s algorithm rooted at infinity without defining it.]

2 For d > 2, consider the d-dimensional integer lattice Zd, and set Ω := {0, 1}E(Zd).
Let Pp be the percolation product measure on Ω, with edge probability p.

(a) Let A be an event invariant under automorphisms of Zd.

Prove that Pp(A) = 0 or 1.

[You may use the fact that ∀ε > 0, there exists an event B that depends on only
finitely many edges, such that Pp(A4B) < ε, where the symmetric difference A4B
is defined as (A \B) ∪ (B \A). You may also use the result that

(
A ∩ ϕ(A)

)
4
(
B ∩ ϕ(B)

)
⊂

(
A4B

)
∪
(
ϕ(A)4ϕ(B)

)
,

holds for A,B ⊂ Ω, and ϕ an automorphism of Zd.]

(b) Let N∞ ∈ {0, 1, . . . , } ∪ {∞} be the number of infinite open clusters in a configur-
ation. It is known for every p ∈ (pc, 1], we have Pp(N∞ > 1) = 1. Prove that for
every p ∈ (pc, 1], one of the following two statements is true:

Pp(N∞ = 1) = 1, Pp(N∞ =∞) = 1.

(c) For k > 2, let Tk be the rooted tree in which the root ρ has degree k, and every
other vertex has degree k + 1. Now let Pp denote percolation product measure on
the edges of Tk. Show that for every p ∈ [0, 1), one of the following two statements
is true:

Pp(N∞ = 0) = 1, Pp(N∞ =∞) = 1.
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3 Let A ◦B denote the disjoint occurrence of two events A,B ∈ ΩG.

(a) State the BK inequality for the percolation product measure Pp, including any
conditions on the events.

(b) Prove, carefully, that on the d-dimensional integer lattice Zd, for d > 2,

Pp (∃ two open edge-disjoint paths 0↔∞) 6 θ(p)2,

where θ(p) := Pp(0↔∞) is the percolation probability.

(c) From now on, assume G is finite. Define the random cluster measure PFK(p,q) on
ΩG, with no boundary conditions.

(d) Let G be the cycle on four vertices, labelled (N,E, S,W ) in that order. Consider
the limit p→ 1, q(1− p)→∞. Show that

PFK(p,q)(N ↔ S) = (1 + o(1))
2(1− p)2q + 1

(1− p)4q3 + 1
.

(e) Hence, or otherwise, prove the existence of p ∈ (0, 1) and q > 1 and an event A ⊂ ΩG

such that

PFK(p,q)(A) < 0.001 and PFK(p,q) (A ◦A | A) > 0.999.

4

The graph G = Z2 ⊕ Z2 is constructed by taking two disjoint copies of Z2, and for
each labelled vertex v ∈ Z2, adding an edge between the two vertices with this label.

(a) Denote by X = (X0, X1, . . .) a simple random walk on G, with X0 = x0 fixed. Prove
that X is recurrent.

[You may use the fact that random walk on Z2 is recurrent without proof.]

(b) State the Aldous–Broder algorithm for constructing a uniform spanning tree T on
G from X .

(c) Given T , let T1 and T2 be the subgraphs of T induced on the two copies of Z2 which
make up the vertex set of G.

Prove that T1 almost surely contains a connected component of size at least 2022.

(d) Prove that T1 is almost surely not connected.
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