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(a) Give the definition of a compact H-hull A and its mapping-out function gA.

(b) Fix r > 0, x ∈ R, let A be a compact H-hull and let gA be its mapping-out function.
Moreover, let rA = {rz : z ∈ A} and A+x = {z+x : z ∈ A}. Express the mapping-out
functions grA and gA+x in terms of gA, r and x.

(c) Prove or disprove: Let S = {z ∈ H : 0 < Im(z) 6 1}. There exists a function
gS , satisfying the properties of a mapping-out function, with the set S in place of a
compact H-hull. [ You may use without proof that every (bijective) conformal map f
from H onto H is of the form f(z) = (az + b)/(cz + d) where a, b, c, d ∈ R are such
that ad− bc = 1.]

(d) Suppose that A is a compact H-hull and let gA be its mapping-out function. Let (zn)
be a sequence of points in H \ A such that zn → z for some point z ∈ A. Show that
Im(gA(zn)) → 0. Show by giving an example that it is not always true that gA(zn)
converges.
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(a) State in full detail (including the random time-change) what it means for a Brownian
motion to be conformally invariant.

(b) Let D be a simply connected domain. Does there exist a (bijective) conformal map
ϕ : D → C \ {0}? Justify your answer.

(c) Let Pz denote the law of a complex Brownian motion B, with B0 = z. For a compact
H-hull A ⊂ D, let gA be its mapping-out function and let τA = inf{t > 0 : Bt /∈ H\A}.
Prove that for any Borel set E ⊂ R \ [−1, 1],

lim
y→∞

yPiy(BτA ∈ E) =
Leb(gA(E))

π
,

where Leb denotes the one-dimensional Lebesgue measure. [You may use without
proof that if τ = inf{t > 0 : Bt /∈ H} then for any Borel set E ⊂ R,

Px+iy(Bτ ∈ E) =

∫

E

y

(t− x)2 + y2
dt

π
.

You may also use standard properties of gA without proof, provided that you state them
clearly.]

(d) Let τD = inf{t > 0 : Bt ∈ D}. For each Borel set E ⊂ ∂D, compute
limy→∞ Piy(BτD ∈ E).
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(a) State the Loewner differential equation for a given (continuous) driving function U
and define the family of compact H-hulls which is generated by U .

(b) Assume that (Kt)t>0 is the family of compact H-hulls corresponding to an SLE process.
State the conformal Markov property of (Kt).

(c) Prove that if U is the driving function of (Kt) and (Kt) satisfies the conformal
Markov property then there exists a κ > 0 and a standard Brownian motion such
that Ut =

√
κBt.

(d) Let (Kt) be the family of compact H-hulls generated by some continuous, real-
valued driving function U and let (gt) denote the Loewner chain. Finally, let
Tx = inf{t > 0 : x ∈ Kt}. Prove using the Loewner differential equation, that if
x is real and positive and t < Tx then g′t(x) ∈ [0, 1] (where g′t(z) denotes the derivative
of gt(z) in the variable z). Prove also that g′t(x) is decreasing in t for t < Tx. [You
may without justification change the order of derivatives and you need not explain why
g′t extends continuously to R.]
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(a) Let Λ be the set of values of κ for which an SLEκ process intersects the boundary of
the domain outside of the initial and terminal points. Describe Λ explicitly. That is,
state which values of κ it contains.

(b) Prove that SLEκ almost surely intersects the boundary outside of the initial and
terminal points for κ ∈ Λ. [You may use any properties of Bessel processes proved
during the lectures, provided that you state them clearly.]

(c) Explain how this can be used to deduce that SLEκ is self-intersecting for κ ∈ Λ.

(d) Prove or disprove: Let η ∼ SLEκ for κ ∈ Λ and let τ = inf{t > 0 : η(t) /∈ D}.
Then P(η([0, τ ]) ∩ R = {0}) > 0, that is, with positive probability η does not hit the
boundary outside of its starting point before exiting D.
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