MATHEMATICAL TRIPOS Part III

Thursday, 9 June, $2022 \quad 9{:}00 \ {\rm am}$ to $11{:}00 \ {\rm am}$

PAPER 203

SCHRAMM-LOEWNER EVOLUTIONS

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

- (a) Give the definition of a compact \mathbb{H} -hull A and its mapping-out function g_A .
- (b) Fix r > 0, $x \in \mathbb{R}$, let A be a compact \mathbb{H} -hull and let g_A be its mapping-out function. Moreover, let $rA = \{rz : z \in A\}$ and $A+x = \{z+x : z \in A\}$. Express the mapping-out functions g_{rA} and g_{A+x} in terms of g_A , r and x.
- (c) Prove or disprove: Let $S = \{z \in \mathbb{H} : 0 < \operatorname{Im}(z) \leq 1\}$. There exists a function g_S , satisfying the properties of a mapping-out function, with the set S in place of a compact \mathbb{H} -hull. [You may use without proof that every (bijective) conformal map f from \mathbb{H} onto \mathbb{H} is of the form f(z) = (az + b)/(cz + d) where $a, b, c, d \in \mathbb{R}$ are such that ad bc = 1.]
- (d) Suppose that A is a compact \mathbb{H} -hull and let g_A be its mapping-out function. Let (z_n) be a sequence of points in $\mathbb{H} \setminus A$ such that $z_n \to z$ for some point $z \in A$. Show that $\operatorname{Im}(g_A(z_n)) \to 0$. Show by giving an example that it is not always true that $g_A(z_n)$ converges.

$\mathbf{2}$

- (a) State in full detail (including the random time-change) what it means for a Brownian motion to be conformally invariant.
- (b) Let D be a simply connected domain. Does there exist a (bijective) conformal map $\varphi: D \to \mathbb{C} \setminus \{0\}$? Justify your answer.
- (c) Let \mathbb{P}^z denote the law of a complex Brownian motion B, with $B_0 = z$. For a compact \mathbb{H} -hull $A \subset \overline{\mathbb{D}}$, let g_A be its mapping-out function and let $\tau_A = \inf\{t \ge 0 : B_t \notin \mathbb{H} \setminus A\}$. Prove that for any Borel set $E \subset \mathbb{R} \setminus [-1, 1]$,

$$\lim_{y \to \infty} y \mathbb{P}^{iy}(B_{\tau_A} \in E) = \frac{\operatorname{Leb}(g_A(E))}{\pi},$$

where Leb denotes the one-dimensional Lebesgue measure. [You may use without proof that if $\tau = \inf\{t \ge 0 : B_t \notin \mathbb{H}\}$ then for any Borel set $E \subset \mathbb{R}$,

$$\mathbb{P}^{x+iy}(B_{\tau} \in E) = \int_E \frac{y}{(t-x)^2 + y^2} \frac{dt}{\pi}$$

You may also use standard properties of g_A without proof, provided that you state them clearly.]

(d) Let $\tau_{\mathbb{D}} = \inf\{t \ge 0 : B_t \in \overline{\mathbb{D}}\}$. For each Borel set $E \subset \partial \mathbb{D}$, compute $\lim_{y \to \infty} \mathbb{P}^{iy}(B_{\tau_{\mathbb{D}}} \in E)$.

3

(a) State the Loewner differential equation for a given (continuous) driving function U and define the family of compact \mathbb{H} -hulls which is generated by U.

3

- (b) Assume that $(K_t)_{t\geq 0}$ is the family of compact \mathbb{H} -hulls corresponding to an SLE process. State the conformal Markov property of (K_t) .
- (c) Prove that if U is the driving function of (K_t) and (K_t) satisfies the conformal Markov property then there exists a $\kappa > 0$ and a standard Brownian motion such that $U_t = \sqrt{\kappa}B_t$.
- (d) Let (K_t) be the family of compact \mathbb{H} -hulls generated by some continuous, realvalued driving function U and let (g_t) denote the Loewner chain. Finally, let $T_x = \inf\{t \ge 0 : x \in K_t\}$. Prove using the Loewner differential equation, that if x is real and positive and $t < T_x$ then $g'_t(x) \in [0,1]$ (where $g'_t(z)$ denotes the derivative of $g_t(z)$ in the variable z). Prove also that $g'_t(x)$ is decreasing in t for $t < T_x$. [You may without justification change the order of derivatives and you need not explain why g'_t extends continuously to \mathbb{R} .]

4

- (a) Let Λ be the set of values of κ for which an SLE_{κ} process intersects the boundary of the domain outside of the initial and terminal points. Describe Λ explicitly. That is, state which values of κ it contains.
- (b) Prove that SLE_{κ} almost surely intersects the boundary outside of the initial and terminal points for $\kappa \in \Lambda$. [You may use any properties of Bessel processes proved during the lectures, provided that you state them clearly.]
- (c) Explain how this can be used to deduce that SLE_{κ} is self-intersecting for $\kappa \in \Lambda$.
- (d) Prove or disprove: Let $\eta \sim \text{SLE}_{\kappa}$ for $\kappa \in \Lambda$ and let $\tau = \inf\{t \ge 0 : \eta(t) \notin \mathbb{D}\}$. Then $\mathbb{P}(\eta([0,\tau]) \cap \mathbb{R} = \{0\}) > 0$, that is, with positive probability η does not hit the boundary outside of its starting point before exiting \mathbb{D} .

END OF PAPER