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(a) Show that if M is a continuous L2-bounded martingale, then the norms

‖M‖ := ‖M∞‖L2 and |||M ||| :=
∥∥∥∥sup
t>0
|Mt|

∥∥∥∥
L2

are equivalent.

(b) Let H be a simple process and M be a continuous L2-bounded martingale. Define
the Itô integral H ·M . Show that H ·M is an L2-bounded martingale.

(c) Let P be the previsible σ-algebra and ν be a finite measure on P. Show that the
set S of simple processes is dense in L2(P, ν).

(d) State the Itô isometry, carefully defining all the spaces involved. For M a continuous
L2-bounded martingale and H a simple process, prove the Itô isometry for H ·M .

[You may assume standard results involving [M ] when M is a continuous L2-
bounded martingale.]
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(a) Define a previsible process. Give an example of a previsible process which is almost
surely not left-continuous. Justify your answer in one line (no proof required).

(b) Let (Ω,F , (Ft),P) be a filtered probability space and let Z be a uniformly integrable
martingale with Zt > 0 for all t. Define a new probability measure P̃� P by setting
P̃(A) = E(Z∞1A) for all A ∈ F . If Y is a uniformly bounded process, adapted
to (Ft) and ZY is a continuous local martingale under P, show that Y is a true
martingale under P̃.

(c) Let (W,W,P) be the Wiener space, i.e. W = C(R+,R), W = σ(Xt : t > 0), where
Xt : W → R is given by Xt(w) = w(t), and P is the Wiener measure, i.e. the unique
probability measure on (W,W) such that (Xt)t>0 is a standard Brownian motion
starting from 0. In this setting, state and prove the Cameron-Martin theorem.

[You may use the Girsanov Theorem. You may also use standard results like
the Kunita-Watanabe identity, Levy’s characterisation of Brownian motion, results
on stochastic exponentials of martingales, quadratic variations under change of
measures etc without proof. ]

(d) Let B be a standard Brownian motion and for a, b > 0, let

τa,b = inf{t > 0 : Bt + bt = a}.

Show that the density of τa,b is given by

a(2πt3)−1/2 exp(−(a− bt)2/(2t)).

[You may assume that the density for τa,0 is a(2πt3)−1/2 exp(−a2/(2t)).]

[You may use any standard results of martingale theory if you state them clearly. In
particular, you can assume the result that a continuous local martingale which is locally
in Doob’s class is a true martingale.]
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(a) Let (Mt)t>0 be a continuous local martingale with M0 = 0.

1. Show that if E([M ]t) <∞ for all t > 0, then both M and M2− [M ] are true
martingales.

2. Show that if E([M ]∞) <∞, then M is an L2-bounded martingale.

(b) Let B be a standard one-dimensional Brownian motion. Find

E
(
Bt

∫ t

0
eBsdBs

)
.

[You may use the fact that the moment generating function EeθZ of a standard

Gaussian random variable Z is e
θ2

2 .]

(c) Let f ∈ C2
b (R), V ∈ Cb(R), a ∈ C1

b (R), b ∈ C1
b (R) with a(x) > ε for some ε > 0 for

all x. For any g ∈ C2
b (R), let

Lg(x) = b(x)g′(x) +
1

2
a(x)g′′(x) .

Let u ∈ C1,2
b (R+ × R) solve

{
∂u
∂t (t, x) = Lu(t, x) + V (x)u(t, x)

u(0, x) = f(x)

for all t ∈ R+, x ∈ R. In this setting, state and prove the Feynman-Kac formula for
X, where X is a solution to a suitable SDE to be specified.

[You may use any standard results proved in class or any results of martingale theory if
you state them clearly (unless specifically asked to prove such a result). In particular, you
can assume the result that a continuous local martingale which is locally in Doob’s class
is a true martingale. If you are using the Itô’s formula, explicitly state your function and
the vector of semimartingales.]
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(a) Let B be a standard one-dimensional Brownian motion. Define

Xt =

∫ t

0
B2

sds−B2
t , t > 0 .

Is X a local martingale? Justify your answer by clearly stating any standard result
that you are using.

(b) Suppose that X is a continuous local martingale with quadratic variation

[X]t =

∫ t

0
Asds

for a non-negative, previsible process (At)t>0. Show that there exists a Brownian
motion B (possibly defined on a larger probability space) such that

Xt = X0 +

∫ t

0
A1/2

s dBs.

(c) Let b, σ : R 7→ R be bounded, continuous functions. Define what it means for X
to be an L-diffusion with diffusivity σ2 and drift b. Show that if X is such an
L-diffusion, then there exists a one-dimensional standard Brownian motion B such
that dXt = b(Xt)dt+ σ(Xt)dBt.

[You may use any standard results proved in class or any results of martingale theory if
you state them clearly (unless specifically asked to prove such a result). If you are using
the Itô’s formula, explicitly state your function and the vector of semimartingales.]
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(a) Let M,N be continuous local martingales.

1. Show that almost surely for all t > 0

|[M,N ]t| 6
√

[M ]t
√

[N ]t .

2. If V (t) denotes the total variation of [M,N ] on [0, t], show that almost surely
for all t > 0,

V (t) 6
√

[M ]t
√

[N ]t .

[You may use any standard results about total variations, quadratic variations and
covariations discussed in class.]

(b) Show that any non-negative integrable local martingale is a supermartingale.

(c) Define what is meant by a strong solution and a weak solution to the SDE

dXt = b(Xt)dt+ σ(Xt)dBt ,

where B is a standard one-dimensional Brownian motion.

(d) Solve the following SDE:

dXt = σXtdBt + µXtdt , X0 = x0,

where µ, x0 ∈ R, σ > 0 and B is a standard one-dimensional Brownian motion. Is
it a strong solution?

[Hint: You may want to consider the function eaBt+ct for some appropriate constants
a, c.]

[If you are using the Itô’s formula, explicitly state your function and the vector of
semimartingales. You may use any standard results if you state them clearly.]
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(a) Fix t > 0 and let h : [0, t] → R be a measurable function which is square-
integrable, and let B be a standard one-dimensional Brownian motion. Show
that Ht =

∫ t
0 h(s)dBs follows a Gaussian distribution, and compute its mean and

variance.

(b) Let λ > 0. Solve the SDE

dXt = −λXtdt+ dBt, X0 = x ∈ R,

where B is a standard Brownian motion.

[Hint: Consider the function eλtXt.]

(c) For any fixed t > 0, show that Xt has a Gaussian distribution. Identify its mean
and variance.

(d) Show that (Xt)t>0 is a Gaussian process, that is, for all 0 < t1 < . . . < tn,
(Xt1 , . . . , Xtn) is jointly Gaussian.

(e) For any 0 < s < t, compute
Cov(Xt, Xs) .

(f) If X0 ∼ N(0, 1
2λ) independent of B, find the distribution of Xt and Cov(Xt, Xs) for

0 < s < t.

[You may use any standard results if you state them clearly. If you are using the Itô’s
formula, explicitly state your function and the vector of semimartingales. You may assume
standard facts about Gaussian distributions.]
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