MATHEMATICAL TRIPOS Part III

Friday, 3 June, 2022 $\quad 1{:}30~\mathrm{pm}$ to $4{:}30~\mathrm{pm}$

PAPER 201

ADVANCED PROBABILITY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let $(X_n : n \in \mathbb{N})$ be a sequence of independent, identically distributed random variables, with mean 0 and variance 1. Set $S_n = X_1 + \cdots + X_n$. Assume that $|X_1| \leq c$ for some constant $c < \infty$. Fix a, b > 0 and set

$$T = \inf\{n \ge 0 : S_n \leqslant -a \text{ or } S_n \ge b\}.$$

- (a) Show that $T < \infty$ almost surely, and that $\mathbb{E}(S_T) = 0$ and $\mathbb{E}(S_T^2) = \mathbb{E}(T)$.
- (b) Set $p = \mathbb{P}(S_T \ge b)$. Show that

$$\frac{a}{a+b+c} \leqslant p \leqslant \frac{a+c}{a+b+c}$$

and deduce that

$$\frac{ab(a+b)}{a+b+c} \leqslant \mathbb{E}(T) \leqslant \frac{(a+c)(b+c)(a+b+2c)}{a+b+c}.$$

[If you use any results of martingale theory then you should state them clearly.]

2 Let $(X_n : n \ge 1)$ be a sequence of independent, identically distributed, integrable random variables. Set $S_n = X_1 + \cdots + X_n$ and $\mu = \mathbb{E}(X_1)$.

- (a) State and prove the strong law of large numbers.
- (b) Show further that, if $X_1 \in L^p(\mathbb{P})$ for some p > 1, then

$$\sup_{m \ge n} |(S_m/m) - \mu| \to 0$$

in $L^p(\mathbb{P})$ as $n \to \infty$.

[If you use any results of martingale theory then you should state them clearly.]

3

- (a) State Prohorov's theorem for a sequence of Borel probability measures on \mathbb{R} .
- (b) Show that there is a constant $C < \infty$ such that, for all $y \in \mathbb{R}$ and all $\lambda \in (0, \infty)$,

$$1_{\{|y| \ge \lambda\}} \leqslant C\lambda \int_0^{1/\lambda} (1 - \cos uy) du$$

(c) Let $(\mu_n : n \ge 1)$ be a sequence of finite Borel measures on \mathbb{R} , not necessarily probability measures. For $u \in \mathbb{R}$, set

$$\psi_n(u) = \int_{\mathbb{R}} e^{iuy} \mu_n(dy).$$

Suppose that $\psi_n(u)$ converges for all u as $n \to \infty$, and that the limit $\psi(u)$ is continuous in u at 0. Show that there is a subsequence (n(k)) such that $\mu_{n(k)}$ converges weakly on \mathbb{R} .

(d) Does the whole sequence $(\mu_n : n \ge 1)$ converge weakly? Justify your answer.

[If you use Lévy's continuity theorem then you should prove it.]

4 Let $(X_t)_{0 \le t \le 1}$ be a Brownian motion in \mathbb{R} , starting from 0. Define for $0 \le t \le 1$

$$A_t = \int_0^t \frac{X_1 - X_s}{1 - s} ds, \quad M_t = X_t - A_t$$

and denote by \mathcal{F}_t the σ -algebra generated by $(X_s : s \in [0, t] \cup \{1\})$.

- (a) Compute $\mathbb{E}(X_t | \mathcal{F}_s)$ for $s, t \in [0, 1]$.
- (b) Show that A_1 is almost surely well defined.
- (c) Show that $(M_t)_{0 \leq t \leq 1}$ is an $(\mathcal{F}_t)_{0 \leq t \leq 1}$ -martingale.
- (d) Show that $(M_t)_{0 \le t \le 1}$ is a Brownian motion and is independent of X_1 .

5 Fix $\varepsilon \in (0, 1/2]$ and define

$$S_0 = \{ x \in \mathbb{R}^3 : |x| \leq \varepsilon \}, \quad S_1 = \{ x \in \mathbb{R}^3 : x + (n, 0, 0) \in S_0 \text{ for some } n \in \mathbb{Z} \}$$

and

$$S_3 = \{ x \in \mathbb{R}^3 : x + (n_1, n_2, n_3) \in S_0 \text{ for some } n_1, n_2, n_3 \in \mathbb{Z} \}.$$

Let $(X_t)_{t\geq 0}$ be a Brownian motion in \mathbb{R}^3 , starting from x say.

(a) Show that, if |x| = 1, then

$$\mathbb{P}_x(X_t \in S_0 \text{ for some } t \ge 0) = \varepsilon.$$

- (b) Show that, almost surely, $(X_t)_{t \ge 0}$ hits S_3 at an unbounded set of times.
- (c) Does $(X_t)_{t \ge 0}$ hit S_1 at an unbounded set of times? Justify your answer.

(a) Let (E, \mathcal{E}, μ) be a σ -finite measure space. What does it mean to say that M is a Poisson random measure on E of intensity μ ?

5

- (b) What does it mean to say that $(X_t)_{t\geq 0}$ is a Lévy process in \mathbb{R} ?
- (c) Let $(N_t^1)_{t \ge 0}, \ldots, (N_t^n)_{t \ge 0}$ be independent Poisson processes, of rates $\lambda_1, \ldots, \lambda_n$ respectively, and let $a_1, \ldots, a_n \in \mathbb{R}$. Set

$$X_t = \sum_{k=1}^n a_k N_t^k.$$

Show that $(X_t)_{t\geq 0}$ is a Lévy process and determine its characteristic exponent ψ .

(d) We call any Lévy process of the form considered in Part (c) a simple pure-jump Lévy process. Let K be a Borel measure on $(0, \infty)$ such that

$$\int_{(0,\infty)} y K(dy) < \infty.$$

Set

$$\psi(u) = \int_{(0,\infty)} (e^{iuy} - 1)K(dy).$$

Show that there exists, on some probability space, a sequence of simple pure-jump Lévy processes $(X_t^n)_{t\geq 0}$ and a Lévy process $(X_t)_{t\geq 0}$ of characteristic exponent ψ such that, as $n \to \infty$,

$$\mathbb{E}\left(\sup_{s\leqslant t}|X_t^n-X_t|\right)\to 0.$$

[Standard properties of integrals with respect to Poisson random measures may be used without proof if stated clearly.]

END OF PAPER

6