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1 Let (Xn : n ∈ N) be a sequence of independent, identically distributed random
variables, with mean 0 and variance 1. Set Sn = X1 + · · ·+Xn. Assume that |X1| 6 c for
some constant c <∞. Fix a, b > 0 and set

T = inf{n > 0 : Sn 6 −a or Sn > b}.

(a) Show that T <∞ almost surely, and that E(ST ) = 0 and E(S2
T ) = E(T ).

(b) Set p = P(ST > b). Show that

a

a+ b+ c
6 p 6 a+ c

a+ b+ c

and deduce that

ab(a+ b)

a+ b+ c
6 E(T ) 6 (a+ c)(b+ c)(a+ b+ 2c)

a+ b+ c
.

[If you use any results of martingale theory then you should state them clearly.]

2 Let (Xn : n > 1) be a sequence of independent, identically distributed, integrable
random variables. Set Sn = X1 + · · ·+Xn and µ = E(X1).

(a) State and prove the strong law of large numbers.

(b) Show further that, if X1 ∈ Lp(P) for some p > 1, then

sup
m>n
|(Sm/m)− µ| → 0

in Lp(P) as n→∞.

[If you use any results of martingale theory then you should state them clearly.]
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(a) State Prohorov’s theorem for a sequence of Borel probability measures on R.

(b) Show that there is a constant C <∞ such that, for all y ∈ R and all λ ∈ (0,∞),

1{|y|>λ} 6 Cλ

∫ 1/λ

0
(1− cosuy)du.

(c) Let (µn : n > 1) be a sequence of finite Borel measures on R, not necessarily
probability measures. For u ∈ R, set

ψn(u) =

∫

R
eiuyµn(dy).

Suppose that ψn(u) converges for all u as n → ∞, and that the limit ψ(u) is
continuous in u at 0. Show that there is a subsequence (n(k)) such that µn(k)
converges weakly on R.

(d) Does the whole sequence (µn : n > 1) converge weakly? Justify your answer.

[If you use Lévy’s continuity theorem then you should prove it.]

4 Let (Xt)06t61 be a Brownian motion in R, starting from 0. Define for 0 6 t 6 1

At =

∫ t

0

X1 −Xs

1− s ds, Mt = Xt −At

and denote by Ft the σ-algebra generated by (Xs : s ∈ [0, t] ∪ {1}).

(a) Compute E(Xt|Fs) for s, t ∈ [0, 1].

(b) Show that A1 is almost surely well defined.

(c) Show that (Mt)06t61 is an (Ft)06t61-martingale.

(d) Show that (Mt)06t61 is a Brownian motion and is independent of X1.
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5 Fix ε ∈ (0, 1/2] and define

S0 = {x ∈ R3 : |x| 6 ε}, S1 = {x ∈ R3 : x+ (n, 0, 0) ∈ S0 for some n ∈ Z}

and
S3 = {x ∈ R3 : x+ (n1, n2, n3) ∈ S0 for some n1, n2, n3 ∈ Z}.

Let (Xt)t>0 be a Brownian motion in R3, starting from x say.

(a) Show that, if |x| = 1, then

Px(Xt ∈ S0 for some t > 0) = ε.

(b) Show that, almost surely, (Xt)t>0 hits S3 at an unbounded set of times.

(c) Does (Xt)t>0 hit S1 at an unbounded set of times? Justify your answer.
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(a) Let (E, E , µ) be a σ-finite measure space. What does it mean to say that M is a
Poisson random measure on E of intensity µ?

(b) What does it mean to say that (Xt)t>0 is a Lévy process in R?

(c) Let (N1
t )t>0, . . . , (N

n
t )t>0 be independent Poisson processes, of rates λ1, . . . , λn

respectively, and let a1, . . . , an ∈ R. Set

Xt =
n∑

k=1

akN
k
t .

Show that (Xt)t>0 is a Lévy process and determine its characteristic exponent ψ.

(d) We call any Lévy process of the form considered in Part (c) a simple pure-jump
Lévy process. Let K be a Borel measure on (0,∞) such that

∫

(0,∞)
yK(dy) <∞.

Set

ψ(u) =

∫

(0,∞)
(eiuy − 1)K(dy).

Show that there exists, on some probability space, a sequence of simple pure-jump
Lévy processes (Xn

t )t>0 and a Lévy process (Xt)t>0 of characteristic exponent ψ
such that, as n→∞,

E
(

sup
s6t
|Xn

t −Xt|
)
→ 0.

[Standard properties of integrals with respect to Poisson random measures may be used
without proof if stated clearly.]
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