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1 In this question, let F be an arbitrary field. Let n be a natural number and let λ
be a partition of n. Let the λ-Specht module over F be denoted by Sλ, and let t ∈ ∆λ be
any λ-tableau.

(a) (i) Show that Sλ is generated as an FSn–module by the polytabloid e(t).

(ii) Let {u} be any λ-tabloid. Show that 〈e(t), {u}〉 ∈ {0,±1}.
(iii) Define a total ordering on the set of λ-tabloids, and use it to show that the

polytabloids corresponding to standard λ-tableaux are linearly independent.

(b) Let bt denote the column symmetrizer of t. You may assume that bt ·Mλ = Fe(t).
Show that if s ∈ ∆λ, then bt · e(s) = 〈e(s), e(t)〉e(t).

Now for each j ∈ [n], suppose that λ has aj parts equal to j for some aj ∈ N0. In
other words, λ = (nan , . . . , 2a2 , 1a1).

(c) Let t∗ ∈ ∆λ be obtained from t by reversing each row. For example, if

t =

1 2 3
4 5
6 7
8 , then t∗ =

3 2 1
5 4
7 6
8 .

(i) Suppose h · {t} = h∗ · {t∗} for some h ∈ C(t) and h∗ ∈ C(t∗). Show that
h = h∗.

[Hint: first consider h(i) and h∗(i) for i in the leftmost column of t.]

(ii) Deduce that if {u} is a λ-tabloid such that 〈e(t), {u}〉 6= 0 and 〈e(t∗), {u}〉 6= 0,
then {u} = k · {t} for some k ∈ C(t) ∩ C(t∗) and 〈e(t), {u}〉 = 〈e(t∗), {u}〉.

(iii) Show that 〈e(t), e(t∗)〉 =
∏n
j=1(aj !)

j .

(d) Now suppose char(F) = p > 0. Hence, or otherwise, show that

dimF
(

EndFSn(Sλ)
)

= 1

whenever λ is p-regular.

Part III, Paper 160



3

2 For a partition λ, let χλ denote the character of the irreducible λ-Specht module
over C. In the usual notation from lectures, ψλ =

∑
π∈SN

sgn(π) · ξλ−id+π for integer

compositions λ, where ξλ = 1Sλ

xSn if λ is a composition and ξλ = 0 otherwise.

(a) Let n ∈ N and suppose n = m+k where m, k ∈ N0. Let λ be an integer composition
of n. Prove that

ξλ
y
Sm×Sk =

∑

µ�k
ξλ−µ#ξµ.

Hence deduce that
ψλ

y
Sm×Sk =

∑

µ�k
ψλ−µ#ξµ.

[You may use earlier results from the course without proof, provided they are stated
clearly.]

For n ∈ N and λ, µ ` n, let χλ(µ) denote the value of χλ on an element of Sn of
cycle type µ. If λ and µ are both the empty partition, χλ(µ) = 1.

(b) (i) State the Murnaghan–Nakayama Rule.

(ii) If δ = (m,m− 1, . . . , 2, 1) for some m ∈ N and µ is a partition with |µ| = |δ|,
show that χδ(µ) = 0 whenever µ has a non-zero part of even size.

(iii) Let n ∈ N and λ ` n. Prove that χλ
′
= χλ · sgnSn .

(c) Suppose λ ` n has the property that χλ(µ) = 0 whenever µ ` n has a non-zero part
of even size.

(i) Show that λ = λ′.

(ii) Deduce that either λ has no hooks of even size, or that the maximum even
hook length of λ is attained by exactly two hooks of λ, namely as h1,j(λ) and
hj,1(λ) for some 1 < j 6 λ1.

(iii) Hence, or otherwise, show that λ = (m,m− 1, . . . , 2, 1) for some m ∈ N.
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3 Let e ∈ N. Let λ be an arbitrary partition.

(a) (i) Prove that |λ| = |Ce(λ)| + ewe(λ), where Ce(λ) denotes the e-core of λ and
we(λ) the e-weight of λ.

[You may use earlier results from the course without proof, provided they are
stated clearly.]

(ii) Determine with proof when the e-quotient tower TQ(λ) of λ has finite depth.

(b) Suppose that the e-quotient of λ is Qe(λ) =
(
λ(0), λ(1), . . . , λ(e−1)

)
. Describe how

to calculate Qe(λ) using James’s e-abacus. Prove that

Qe(λ
′) =

(
(λ(e−1))′, . . . , (λ(1))′, (λ(0))′

)
.

[You may use results from example sheets without proof, provided they are stated
clearly.]

(c) Let (i, j) ∈ Z × Z. We define the e-residue of (i, j) to be the value re(i, j) ∈
{0, 1, . . . , e− 1} such that re(i, j) ≡ j − i (mod e). The e-content of λ is defined to
be the multiset {re(i, j) | (i, j) ∈ Y(λ)}.
For example, if α = (5, 4, 4, 2, 1) ` 16 then Y(α) with r4(i, j) filled into each box
(i, j) is given by

0 1 2 3 0
3 0 1 2
2 3 0 1
1 2
0

and the 4-content of α is {0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3}.

(i) Suppose λ and µ are two partitions of the same size. Show that if λ and µ
have equal e-cores, then they have equal e-contents.

(ii) Let m ∈ N be a multiple of e, and suppose A is the e-abacus configuration
of a β-set X = {h1, h2, . . . , hm} where h1 > h2 > · · · > hm > 0. Let
λ = (λ1, . . . , λm) be the partition corresponding to A (where this expression
may contain trailing zeros). Show that for each i ∈ {1, 2, . . . ,m},

re(i, λi) ≡ hi (mod e).

(iii) Suppose λ and µ are two partitions of the same size. Show that if λ and µ
have equal e-contents, then they have equal e-cores.
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4 Let F be a field. For a partition µ, the µ-Young permutation module over F is
denoted by Mµ, and the µ-Specht module over F by Sµ.

(a) Recall that G(x) =
∏∞
i=1

1
1−xi is the generating function counting the number of

partitions (i.e. G(x) =
∑∞

n=0 |P(n)|xn).

(i) Let e ∈ N. Write down the generating function counting the number of
partitions into parts of size at most e. Explain why it is equal to the generating
function counting the number of partitions into at most e parts.

(ii) Let e ∈ N. Write down the generating function counting the number of
partitions into exactly e parts.

(iii) Let n ∈ N. Show that the number of self-conjugate partitions of n is equal to
the number of partitions of n into distinct odd parts. Hence write down the
generating function counting the number of self-conjugate partitions.

(b) Suppose F = C. Let n ∈ N and let λ be a partition of n. Suppose we have an
isomorphism of CSn–modules Mλ ∼=

⊕
α`n(Sα)⊕mα for some mα ∈ N0.

(i) If α ` n is such that mα > 0, prove that α D λ.

[You may assume that if t ∈ ∆α and u ∈ ∆λ are such that bt · {u} 6= 0, then
α D λ.]

(ii) For any α ` n, describe the value of mα in terms of the number of certain
tableaux.

(iii) Let n > 3 and λ = (n− 2, 12). Determine mα for all α ` n.

(c) Now let F be any field. Let n ∈ N with n > 3. Construct, with proof, a sequence of
submodules U0, U1, . . . , Uk of M (n−2,12) (for some k) with the following properties:

◦ U0 = 0 and Uk = M (n−2,12);

◦ U0 < U1 < U2 < · · · < Uk−1 < Uk; and

◦ for each i ∈ {0, 1, . . . , k−1}, Ui+1/Ui is isomorphic as FSn–modules to Sα(i) for
some partition α(i) ` n. The partitions α(i) should be explicitly determined.

[Hint: when n > 4, first show that

0 6 S(n−2,12) 6 V ∩ kerφ2 6 V 6 U ∩ kerφ1 6 U 6 kerφ0 6M (n−2,12)

for suitably defined Sn–homomorphisms φi : M (n−2,12) → M (n−i,i) for i ∈ {0, 1, 2},
and suitably defined U, V 6M (n−2,12).]

END OF PAPER
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