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1 Bound state for a modified harmonic oscillator
We work in dimension d > 1 with real valued functions. For x ∈ Rd, we let

|x| =
√∑d

i=1 x
2
i . We pick α > 0 and consider the space

Σ = H1 ∩ {|x|α2 u ∈ L2}

equipped with the scalar product

〈u, v〉Σ =

∫

Rd
∇u · ∇vdx+

∫

Rd
|x|αuvdx.

1. Show that there exists a universal constant C > 0 such that

∀u ∈ D(Rd),
∫

|x|61
|u|2 6 C‖u‖2Σ.

Conclude that (Σ, 〈·, ·〉Σ) is a Hilbert space.
(Hint: integrate parts using that for any well localized function χ which is one on
|x| 6 1, ∇ · (xχ) = dχ+ x · ∇χ)

2. Prove that the embedding Σ ⊂ L2 is continuous and compact.

3. Show that for all f ∈ L2, ∃!T (f) ∈ Σ such that

∀v ∈ Σ, 〈v, T (f)〉Σ = 〈v, f〉L2

and that the map T : L2 7→ Σ is continuous.

4. Show that the map T : L2 7→ L2 is compact and derive the equation satisfied by
T (f) in D′(Rd).

5. Show that there exists λ > 0 and ψ > 0, ψ ∈ Σ non zero, solution to

−∆ + |x|αψ = λψ in D′(Rd).
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2 Small data global existence for critical NLS
We work in dimension d > 1 with complex valued functions. We let u ∈ H1

rad be the
space of H1(Rd) distributions with radial symmetry. We define the energy functional

E(u) =
1

2

∫

Rd

|∇u|2 − 1

2 + 4
d

∫

Rd

|u|2+ 4
ddx

and for u ∈ H1 non zero,

J(u) =
‖∇u‖2L2‖u‖

4
d

L2

‖u‖2+
4
d

L2+ 4
d

.

We let Q be the radially symmetric ground state solution to ∆Q−Q+Q2+ 4
d = 0.

1. Given a ∈ C, λ > 0, let ua,λ(x) = au(λx). Show that J(ua,λ) = J(u). Show that

I = inf
u∈H1\{0}

J(u) > 0.

2. Show that the infimum is attained and that there exists a minimizer which is non
negative. You may assume that

I = inf
u∈H1

rad\{0}
J(u).

3. Show that a minimizer u > 0 satisfies an equation of the form

∆u− λu+ µu1+
4
d = 0 in D′(Rd)

for some λ = λu > 0, µ = µu > 0. Classify all minimizers.

4. Show that
I =

2

2 + 4
d

‖Q‖
4
d

L2 .

hint: Show that E(Q) = 0 using the Pohozaev multiplier (no need to reprove the
Pohozaev identity).

5. Prove that

∀u ∈ H1, E(u) > 1

2
‖∇u‖2L2

[
1−

( ‖u‖L2

‖Q‖L2

) 4
d

]
.
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3 Minimal mass blow up solutions
We work in dimension d > 1 with complex valued functions. We let u ∈ H1

rad be the
space of H1(Rd) distributions with radial symmetry. We define the energy functional

E(u) =
1

2

∫

Rd

|∇u|2 − 1

2 + 4
d

∫

Rd

|u|2+ 4
ddx.

We let Q be the radially symmetric ground state solution to ∆Q − Q + Q2+ 4
d = 0. We

admit the following sharp Gagliardo-Nirenberg inequality :

∀u ∈ H1, E(u) > 1

2
‖∇u‖2L2

[
1−

( ‖u‖L2

‖Q‖L2

) 4
d

]
.

1. Let u0 ∈ H1 with ‖u0‖L2 < ‖Q‖L2 , show that the unique corresponding solution to
the (NLS) problem

(NLS)

∣∣∣∣∣
i∂tu+ ∆u+ u|u| 4d = 0
u|t=0 = u0

is global in time.

2. Given h ∈ D(Rd) real valued, compute

d

dt
E(Q+ th)|t=0.

Conclude that ∀ε > 0, there exist an initial data u0 ∈ H1 with ‖u0‖L2 < ‖Q‖L2 + ε
such that the corresponding solution to (NLS) blows up in finite time.

3. Let u0 ∈ H1 with ‖u0‖L2 = ‖Q‖L2 . Assume that the corresponding solution u(t, ·)
to (NLS) blows up in finite time say 0 < T < +∞. Let tn → T . Compute λ(tn) so
that

vn(x) = λ
d
2
nu (tn, λnx)

satisfies
∀n, ‖∇vn‖L2 = ‖∇Q‖L2 .

Compute limn→+∞E(vn).

4. State the profile decomposition Lemma.

5. Show that there exists xn ∈ Rd such that up to a subsequence, vn(·+xn) is strongly
convergent in L2+ 4

d .

END OF PAPER
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