MATHEMATICAL TRIPOS Part III

Thursday, 2 June, $2022 \quad 9{:}00 \ {\rm am}$ to $11{:}00 \ {\rm am}$

PAPER 140

SYMPLECTIC GEOMETRY

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 On \mathbb{R}^4 with coordinates (x_1, y_1, x_2, y_2) , consider the smooth family of 1-forms

$$\sigma_s := \frac{1}{2}(x_1 dy_1 - y_1 dx_1) + \frac{s}{2}(x_2 dy_2 - y_2 dx_2),$$

where $s \in (0, \infty)$. Consider the unit 3-sphere $S^3 \subset \mathbb{R}^4$ given by $\sum_{i=1}^2 (x_i^2 + y_i^2) = 1$ and let $\iota : S^3 \to \mathbb{R}^4$ denote the inclusion map. Show that for each $s \in (0, \infty)$, $\alpha_s := \iota^* \sigma_s$ defines a contact form on S^3 . Find the Reeb vector field R_s associated to α_s . Prove that for s irrational R_s has only two closed orbits.

2 Let (M, ω) be a symplectic manifold. Suppose X is a compact Lagrangian submanifold with $H^1(X, \mathbb{R}) = \{0\}$. Show that every embedding $j : X \to M$ which is sufficiently C^1 -close to the inclusion $X \hookrightarrow M$ and such that j(X) is Lagrangian, has the property that $j(X) \cap X$ has at least two points. Is the claim still true if we drop the assumption that $H^1(X, \mathbb{R}) = \{0\}$?

[You may assume the Weinstein tubular neighbourhood theorem, provided it is clearly stated. You may also assume that a smooth map which is C^1 -close to the identity is a diffeomorphism.]

3 (a) Let X be an *n*-dimensional manifold and let α denote the Liouville 1-form of T^*X . Given a diffeomorphism $f: X \to X$ explain how to lift it to a natural diffeomorphism $f_{\#}: T^*X \to T^*X$ such that $f_{\#}^* \alpha = \alpha$.

(b) Let $S^2 \subset \mathbb{R}^3$ be the unit sphere and $\omega = -d\alpha$ the canonical symplectic form of T^*S^2 with projection $\pi: T^*S^2 \to S^2$. Consider the 2-form σ on S^2 given by

$$\sigma_u(v,w) = \langle u, v \times w \rangle,$$

where $u \in S^2$, $v, w \in T_u S^2$ are vectors in \mathbb{R}^3 , \times is the cross product and $\langle \cdot, \cdot \rangle$ is the standard inner product. Consider the 2-forms on T^*S^2

$$\omega_{\pm} = \omega \pm \pi^* \sigma.$$

Show that ω_+ and ω_- are symplectic forms. Are ω_+ and ω_- strongly isotopic? Are ω_+ and ω_- symplectomorphic?

4 Let *L* be a Lagrangian submanifold of a symplectic manifold (M, ω) and $H : M \to \mathbb{R}$ a Hamiltonian such that *H* restricted to *L* is constant. Show that the Hamiltonian flow of *H* preserves *L*.

Let V be a vector field on a manifold X with flow ϕ_t defined for all $t \in \mathbb{R}$. Consider T^*X with its standard symplectic form and for each $t \in \mathbb{R}$, let $\psi_t := (\phi_t)_{\#} : T^*X \to T^*X$ denote the lift of ϕ_t to T^*X . Show that ψ_t is also a flow, that is, $\psi_{t+s} = \psi_t \circ \psi_s$ for all $s, t \in \mathbb{R}$. Let $V_{\#}$ denote the vector field of the flow ψ_t , that is,

$$V_{\#}(x,\xi) := \left. \frac{d}{dt} \right|_{t=0} \psi_t(x,\xi), \text{ for } (x,\xi) \in T^*X$$

Show that $V_{\#}$ is the Hamiltonian vector field of the Hamiltonian $H: T^*X \to \mathbb{R}$ given by $H(x,\xi) = \xi(V(x)).$

Let $Y \subset X$ be a submanifold invariant under the flow ϕ_t . Show that the conormal bundle N^*Y of Y is invariant under the flow ψ_t .

END OF PAPER

Part III, Paper 140