MATHEMATICAL TRIPOS Part III

Thursday, 9 June, 2022 $\quad 1{:}30~\mathrm{pm}$ to $4{:}30~\mathrm{pm}$

PAPER 137

MODULAR FORMS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt **ALL** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) Let $k \in \mathbb{Z}$ and let $\Gamma \leq \mathrm{SL}_2(\mathbb{Z})$ be a congruence subgroup. Define the space $M_k(\Gamma)$ of modular forms of weight k and level Γ .

(b) Now let $N \in \mathbb{N}$ and assume that k > 2. For each $(x, y) \in (\mathbb{Z}/N\mathbb{Z})^2$ and $\tau \in \mathfrak{h}$, define

$$G_k^{(x,y)}(\tau) = \sum_{\substack{(c,d) \in \mathbb{Z}^2 - \{(0,0)\}\\(c,d) \equiv (x,y) \bmod N}} (c\tau + d)^{-k}.$$

Prove that $G_k^{(x,y)}(\tau)$ converges absolutely to a holomorphic function in \mathfrak{h} .

(c) Show that if $\gamma \in SL_2(\mathbb{Z})$, then $G_k^{(x,y)}|_k[\gamma] = G_k^{(x,y)\gamma}$. (d) Prove that $G_k^{(x,y)} \in M_k(\Gamma(N))$.

2 Let $k \ge 12$ be an even integer.

(a) Let

$$\mathcal{F} = \{ \tau \in \mathfrak{h} \mid |\tau| \ge 1, \operatorname{Re}(\tau) \in [-1/2, 1/2] \}.$$

Show that every element of \mathfrak{h} is $SL_2(\mathbb{Z})$ -conjugate to an element of \mathcal{F} .

(b) Show that if $f \in S_k(\mathrm{SL}_2(\mathbb{Z}))$ has q-expansion $f(\tau) = \sum_{n=1}^{\infty} a_n(f)q^n$, then there is a constant C > 0 such that $|a_n(f)| \leq Cn^{k/2}$ for each $n \in \mathbb{N}$.

(c) Let $G_k(\tau) = \sum_{(c,d)\in\mathbb{Z}^2-\{(0,0)\}} (c\tau + d)^{-k} \in M_k(\mathrm{SL}_2(\mathbb{Z}))$. Show that if $f \in S_k(\mathrm{SL}_2(\mathbb{Z}))$, then the integral

$$\int_{\tau \in \mathrm{SL}_2(\mathbb{Z}) \backslash \mathfrak{h}} f(\tau) \overline{G_k(\tau)} y^k \frac{dxdy}{y^2}$$

(where $\tau = x + iy$) is absolutely convergent, and compute its value.

3 Let N be a positive integer, and let p be a prime number.

(a) Define the congruence subgroup $\Gamma_1(N)$.

(b) Let $\mathcal{L}(N)$ denote the set of pairs $(\Lambda, v + \Lambda)$, where $\Lambda \leq \mathbb{C}$ is a lattice and $v + \Lambda \in \mathbb{C}/\Lambda$ is a point of exact order N, in the sense that $Nv + \Lambda = 0 + \Lambda$ but $dv + \Lambda \neq 0 + \Lambda$ for any $d \in \mathbb{N}$, $1 \leq d < N$. Let \mathbb{C}^{\times} act on $\mathcal{L}(N)$ by $\lambda(\Lambda, v + \Lambda) = (\lambda\Lambda, \lambda v + \lambda\Lambda)$.

Show that the map $\tau \mapsto (\Lambda_{\tau}, 1/N + \Lambda_{\tau})$, where $\Lambda_{\tau} = \mathbb{Z}\tau \oplus \mathbb{Z}$, determines a bijection

$$\Gamma_1(N) \setminus \mathfrak{h} \xrightarrow{\sim} \mathbb{C}^{\times} \setminus \mathcal{L}(N).$$

(c) Let $(\Lambda, v + \Lambda) \in \mathcal{L}(N)$. Let $a_p(\Lambda, v + \Lambda)$ denote the number of lattices $\Lambda' \leq \mathbb{C}$ such that $\Lambda \leq \Lambda'$, $[\Lambda' : \Lambda] = p$, and the image $v + \Lambda'$ of $v + \Lambda$ in \mathbb{C}/Λ' has exact order N.

Compute $a_p(\Lambda, v + \Lambda)$ when (i) p does not divide N and (ii) when p divides N.

Part III, Paper 137

CAMBRIDGE

4 Let $k \ge 2$ be an even integer.

(a) Let $\Lambda \leq \mathbb{R}^n$ be a lattice. Define the dual lattice $\Lambda^{\vee} \leq \mathbb{R}^n$. State and prove a version of the Poisson summation formula for a continuous function $f : \mathbb{R}^n \to \mathbb{C}$ and lattice Λ .

(b) Let us identify $\mathbb{C} = \mathbb{R}^2$ using the basis 1, *i*. Given a lattice $\Lambda \leq \mathbb{C}$, define

$$\theta_k(\Lambda) = \sum_{\lambda \in \Lambda} \lambda^k e^{-\pi |\lambda|^2}.$$

Prove the identity

$$\theta_k(\Lambda) = (-i)^k m(\Lambda)^{-1} \theta_k(\Lambda^{\vee}).$$

[You may use the identity $\hat{f}_k(x,y) = (-i)^k f_k(x,y)$, where $\hat{f}_k(x,y)$ is the Fourier transform of the function $f_k : \mathbb{R}^2 \to \mathbb{C}$ given by the formula $f_k(x,y) = (x+iy)^k e^{-\pi(x^2+y^2)}$.]

(c) For $\tau \in \mathfrak{h}$ and $s \in \mathbb{C}$ with $\operatorname{Re}(k+2s) > 2$, let

$$G_k(\tau, s) = \sum_{(c,d) \in \mathbb{Z}^2 - \{(0,0)\}} \frac{\operatorname{Im}(\tau)^s}{(c\tau + d)^k |c\tau + d|^{2s}}$$

(you may assume that the sum converges absolutely for such values of s).

Prove that for each fixed $\tau \in \mathfrak{h}$, the function $G_k(\tau, s)$ admits an analytic continuation to all $s \in \mathbb{C}$. [You may assume any relevant properties of the function $\Gamma(s)$.]

END OF PAPER