MATHEMATICAL TRIPOS Part III

Thursday, 2 June, 2022 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 136

LOCAL FIELDS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) Let L/K be a finite extension of algebraic number fields with rings of integers \mathcal{O}_L and \mathcal{O}_K respectively.

- (i) Define the *inverse different* $\mathcal{D}_{L/K}^{-1}$ of L/K and show that it is a fractional ideal of K whose inverse $\mathcal{D}_{L/K}$ is an ideal in \mathcal{O}_L .
- (ii) Assume $\mathcal{O}_L = \mathcal{O}_K[\alpha]$ where $\alpha \in \mathcal{O}_L$ and let $g(X) \in K[X]$ be the minimal polynomial for α . Show that $\mathcal{D}_{L/K} = (g'(\alpha))$. Hence determine $\mathcal{D}_{L/\mathbb{Q}}$ for $L = \mathbb{Q}(\sqrt{3})$ and $L = \mathbb{Q}(\sqrt{5})$.

[You may assume without proof that the trace form is non-degenerate for a separable extension of fields.]

(b) Decide whether each of the following rings is a Dedekind domain. Justify your answer.

- (i) $\mathbb{Z}[T]$.
- (ii) The subring $R := \mathbb{C}[T^2, T^3] \subset \mathbb{C}[T]$ generated by T^2 and T^3 .
- (iii) $\mathbb{Z}[\zeta_3]$, where ζ_3 is a primitive 3^{rd} root of unity.

 $\mathbf{2}$

(a) Let K be a complete non-archimedean valued field. Show that K is locally compact if and only if K is discretely valued and has finite residue field. Deduce that if K is algebraically closed, it cannot be locally compact.

- (b)
- (i) Show that an absolute value $|\cdot|$ on a field is non-archimedean if and only if |n| is bounded on \mathbb{Z} . Deduce that every absolute value on $\mathbb{F}_p(t)$ is non-archimedean.
- (ii) Define an absolute value on $\mathbb{F}_3(t)$ such that its completion is isomorphic to $\mathbb{F}_{27}((T))$.

3 (a) Let K be a finite extension of \mathbb{Q}_p . Show that there is a finite index subgroup of \mathcal{O}_K^{\times} which is isomorphic to $(\mathcal{O}_K, +)$.

(b) Let p be an odd prime and let $K = \mathbb{Q}_p(\zeta_p, \sqrt[p]{p})$. Show that K/\mathbb{Q}_p is a totally ramified Galois extension of degree p(p-1). Find a uniformizer for K, and compute the higher ramification groups $G_i(K/\mathbb{Q}_p)$, for $i \in \mathbb{Z}_{\geq 0}$.

 $\mathbf{4}$

(a) State and prove a version of Hensel's Lemma.

(b) Let K be a local field. Let P be the set of elements $x \in K^{\times}$ such that x is an m^{th} power for infinitely many integers $m \ge 1$. Show that $P = \mathcal{O}_K^{\times}$.

(c) Determine the number and degrees of the irreducible factors of the polynomial $f(X) = X^4 + 9X^2 - 2$ over \mathbb{Q}_2 .

- 5 Let K be a local field with residue \mathbb{F}_q and $\pi \in \mathcal{O}_K$ a uniformizer.
 - (a) Let $f(X), g(X) \in \mathcal{O}_K[X]$ be Lubin–Tate series for π and let $L(X_1, \ldots, X_n) = \sum_{i=1}^n a_i X_i \in \mathcal{O}_K[X_1, \ldots, X_n]$ be a linear form.
 - (i) Show that there exists a unique $F(X_1, \ldots, X_n) \in \mathcal{O}_K[[X_1, \ldots, X_n]]$ such that
 - $F(X_1, \ldots, X_n) \equiv L(X_1, \ldots, X_n) \mod \deg 2$
 - $f \circ F = F \circ g$.
 - (ii) Let $F(X_1, \ldots, X_n) \in \mathcal{O}_K[[X_1, \ldots, X_n]]$ denote the power series obtained in (i) with f = g and $L(X_1, \ldots, X_n) = \sum_{i=1}^n X_i$. Show that $F(X_1, \ldots, X_n) = F(X_{\sigma(1)}, \ldots, X_{\sigma(n)})$ for any $\sigma \in S_n$, and that for any $a \in \mathcal{O}_K$, there exists $\theta_a(X) \in \mathcal{O}_K[[X]]$ such that $\theta_a(X) \equiv aX \mod X^2$ and $\theta_a \circ F = F \circ \theta_a$.
 - (b) Let $f(X) = \pi X + X^q$ and let $f_n(X) \in \mathcal{O}_K[X]$ denote the *n*-fold composition of f. Let α be a root of $f_n(X)$. Show that $K(\alpha)$ is a totally ramified separable extension of K.

END OF PAPER