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1 (a) Let L/K be a finite extension of algebraic number fields with rings of integers
OL and OK respectively.

(i) Define the inverse different D−1L/K of L/K and show that it is a fractional ideal of
K whose inverse DL/K is an ideal in OL.

(ii) AssumeOL = OK [α] where α ∈ OL and let g(X) ∈ K[X] be the minimal polynomial
for α. Show that DL/K = (g′(α)). Hence determine DL/Q for L = Q(

√
3) and

L = Q(
√

5).

[You may assume without proof that the trace form is non-degenerate for a separable
extension of fields.]

(b) Decide whether each of the following rings is a Dedekind domain. Justify your
answer.

(i) Z[T ].

(ii) The subring R := C[T 2, T 3] ⊂ C[T ] generated by T 2 and T 3.

(iii) Z[ζ3], where ζ3 is a primitive 3rd root of unity.
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(a) Let K be a complete non-archimedean valued field. Show that K is locally
compact if and only if K is discretely valued and has finite residue field. Deduce that if
K is algebraically closed, it cannot be locally compact.

(b)

(i) Show that an absolute value | · | on a field is non-archimedean if and only if |n| is
bounded on Z. Deduce that every absolute value on Fp(t) is non-archimedean.

(ii) Define an absolute value on F3(t) such that its completion is isomorphic to F27((T )).

3 (a) Let K be a finite extension of Qp. Show that there is a finite index subgroup
of O×

K which is isomorphic to (OK ,+).

(b) Let p be an odd prime and let K = Qp(ζp, p
√
p). Show that K/Qp is a totally

ramified Galois extension of degree p(p− 1). Find a uniformizer for K, and compute the
higher ramification groups Gi(K/Qp), for i ∈ Z>0.

Part III, Paper 136



3

4

(a) State and prove a version of Hensel’s Lemma.

(b) Let K be a local field. Let P be the set of elements x ∈ K× such that x is an
mth power for infinitely many integers m > 1. Show that P = O×

K .

(c) Determine the number and degrees of the irreducible factors of the polynomial
f(X) = X4 + 9X2 − 2 over Q2.

5 Let K be a local field with residue Fq and π ∈ OK a uniformizer.

(a) Let f(X), g(X) ∈ OK [X] be Lubin–Tate series for π and let L(X1, . . . . , Xn) =∑n
i=1 aiXi ∈ OK [X1, . . . , Xn] be a linear form.

(i) Show that there exists a unique F (X1, . . . , Xn) ∈ OK [[X1, . . . , Xn]] such that

• F (X1, . . . , Xn) ≡ L(X1, . . . , Xn) mod deg 2

• f ◦ F = F ◦ g.

(ii) Let F (X1, . . . , Xn) ∈ OK [[X1, . . . , Xn]] denote the power series obtained in
(i) with f = g and L(X1, . . . , Xn) =

∑n
i=1Xi. Show that F (X1, . . . , Xn) =

F (Xσ(1), . . . , Xσ(n)) for any σ ∈ Sn, and that for any a ∈ OK , there exists
θa(X) ∈ OK [[X]] such that θa(X) ≡ aX mod X2 and θa ◦ F = F ◦ θa.

(b) Let f(X) = πX + Xq and let fn(X) ∈ OK [X] denote the n-fold composition of f .
Let α be a root of fn(X). Show that K(α) is a totally ramified separable extension
of K.
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