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1 Let G be a (not necessarily Abelian) group and let A,B and C be finite subsets of
G.

(i) Prove that |A||BC−1| 6 |AB−1||AC−1|, where XY −1 denotes the set {xy−1 :
x ∈ X, y ∈ Y }.

(ii) Suppose that |AAA| 6 K|A|. Prove that |AAAA| 6 K4|A|. [Hint: you will
need to apply the result of the previous part more than once.]

(iii) By considering sets of the form H ∪ {x}, where |HH| is comparable to |H|
and x is an element of G, prove that in general if |AA| 6 K|A| one cannot deduce that
|AAA|/|A| is bounded above by a constant that depends only on K.

2 Let C be a constant, let p be a prime, and let φ : Fn
p → Fn

p be a function with the
property that for every d ∈ Fn

p there are at most C distinct values of φ(x+ d)− φ(x) as x
ranges over Fn

p .

(i) Let X be the set of all possible values of φ(x)−φ(x+a)−φ(x+ b) +φ(x+a+ b)
and let V be a subspace of Fn

p . Prove that if V ∩ X = {0}, then for every translate
W = V +w of V the restriction of φ to φ−1(W ) is a Freiman homomorphism (of order 2).

(ii) Let Γ be the graph of φ. By considering |({0} ×X) + Γ| in two different ways,
prove that |X| 6 C5.

(iii) By considering a random subspace V of suitable codimension and then a random
translate of that subspace, prove that there is a subset A of Fn

p of density at least p−1C−5

such that the restriction of φ to A is a Freiman homomorphism (again of order 2).

3 (i) State and prove Bogolyubov’s lemma.

(ii) Assuming any named theorems from the course that you wish, as well as basic
facts about Freiman isomorphisms, prove that for every c > 0 and every prime p there
exists a constant c′ > 0 such that if A ⊂ FN

p is a set of size n that contains at least cn3

additive quadruples, then 2A− 2A contains a subspace of size at least c′n.

(iii) Assuming any results you like from the course, prove that if A is a subset of Z of
size n and |A−A| 6 Cn, then A contains an arithmetic progression of length 3 (provided
that n is large enough in terms of C).
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4 (i) Let G be a finite Abelian group with order not divisible by 2 or 3 and let
f : G→ C. Define the U2 and U3 norms of f .

(ii) Prove the inequality

|Ex,df1(x)f2(x+ d)f3(x+ 2d)f4(x+ 3d)| 6 ‖f1‖2‖f2‖2‖f3‖U3‖f4‖U3 ,

assuming a similar result for three functions and the U2 norm. Explain briefly what this
result implies about the number of arithmetic progressions of length 4 in a subset A of G.

(iii) Suppose that ‖f‖8U3 > c and ‖f‖∞ 6 1. Prove that there is a subset B ⊂ G

and a function φ : B → Ĝ such that |∂̂af(φ(a))|2 > c/2 for every a ∈ B and B4 contains
at least (c/2)8|G|3 quadruples (a, b, c, d) such that a+ b = c+ d and φ(a)φ(b) = φ(c)φ(d).
[You may assume the box-norm inequality.]

(iv) Give a very brief indication how the results of (ii) and (iii) lead to a proof that
for every δ > 0 there exists n such that every subset of Fn

5 of density at least δ contains
an arithmetic progression of length 4. [For this part there is no need to give proofs – just
the basic structure of the argument is enough.]

END OF PAPER
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