MATHEMATICAL TRIPOS Part III

Monday, 13 June, 2022 $-1{:}30~\mathrm{pm}$ to $3{:}30~\mathrm{pm}$

PAPER 129

INTRODUCTION TO ADDITIVE COMBINATORICS

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let G be a (not necessarily Abelian) group and let A, B and C be finite subsets of G.

(i) Prove that $|A||BC^{-1}| \leq |AB^{-1}||AC^{-1}|$, where XY^{-1} denotes the set $\{xy^{-1} : x \in X, y \in Y\}$.

(ii) Suppose that $|AAA| \leq K|A|$. Prove that $|AAAA| \leq K^4|A|$. [Hint: you will need to apply the result of the previous part more than once.]

(iii) By considering sets of the form $H \cup \{x\}$, where |HH| is comparable to |H| and x is an element of G, prove that in general if $|AA| \leq K|A|$ one cannot deduce that |AAA|/|A| is bounded above by a constant that depends only on K.

2 Let *C* be a constant, let *p* be a prime, and let $\phi : \mathbb{F}_p^n \to \mathbb{F}_p^n$ be a function with the property that for every $d \in \mathbb{F}_p^n$ there are at most *C* distinct values of $\phi(x+d) - \phi(x)$ as *x* ranges over \mathbb{F}_p^n .

(i) Let X be the set of all possible values of $\phi(x) - \phi(x+a) - \phi(x+b) + \phi(x+a+b)$ and let V be a subspace of \mathbb{F}_p^n . Prove that if $V \cap X = \{0\}$, then for every translate W = V + w of V the restriction of ϕ to $\phi^{-1}(W)$ is a Freiman homomorphism (of order 2).

(ii) Let Γ be the graph of ϕ . By considering $|(\{0\} \times X) + \Gamma|$ in two different ways, prove that $|X| \leq C^5$.

(iii) By considering a random subspace V of suitable codimension and then a random translate of that subspace, prove that there is a subset A of \mathbb{F}_p^n of density at least $p^{-1}C^{-5}$ such that the restriction of ϕ to A is a Freiman homomorphism (again of order 2).

3 (i) State and prove Bogolyubov's lemma.

(ii) Assuming any named theorems from the course that you wish, as well as basic facts about Freiman isomorphisms, prove that for every c > 0 and every prime p there exists a constant c' > 0 such that if $A \subset \mathbb{F}_p^N$ is a set of size n that contains at least cn^3 additive quadruples, then 2A - 2A contains a subspace of size at least c'n.

(iii) Assuming any results you like from the course, prove that if A is a subset of \mathbb{Z} of size n and $|A - A| \leq Cn$, then A contains an arithmetic progression of length 3 (provided that n is large enough in terms of C).

4 (i) Let G be a finite Abelian group with order not divisible by 2 or 3 and let $f: G \to \mathbb{C}$. Define the U^2 and U^3 norms of f.

(ii) Prove the inequality

$$|\mathbb{E}_{x,d}f_1(x)f_2(x+d)f_3(x+2d)f_4(x+3d)| \leq ||f_1||_2 ||f_2||_2 ||f_3||_{U^3} ||f_4||_{U^3},$$

assuming a similar result for three functions and the U^2 norm. Explain briefly what this result implies about the number of arithmetic progressions of length 4 in a subset A of G.

(iii) Suppose that $||f||_{U^3}^8 \ge c$ and $||f||_{\infty} \le 1$. Prove that there is a subset $B \subset G$ and a function $\phi: B \to \hat{G}$ such that $|\widehat{\partial_a f}(\phi(a))|^2 \ge c/2$ for every $a \in B$ and B^4 contains at least $(c/2)^8 |G|^3$ quadruples (a, b, c, d) such that a + b = c + d and $\phi(a)\phi(b) = \phi(c)\phi(d)$. [You may assume the box-norm inequality.]

(iv) Give a very brief indication how the results of (ii) and (iii) lead to a proof that for every $\delta > 0$ there exists *n* such that every subset of \mathbb{F}_5^n of density at least δ contains an arithmetic progression of length 4. [For this part there is no need to give proofs – just the basic structure of the argument is enough.]

END OF PAPER

Part III, Paper 129