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1 (a) Define the group law on an elliptic curve E/Q in terms of the chord and tangent
process. Assuming this defines a group, show that E(Q) is a subgroup.

(b) Let E/Q be the elliptic curve y2 = x3 − 9x + 9. Let P = (0, 3) and Q = (3, 3).
Compute 2P , 2Q, P + Q and P −Q. Show that if 0 6= (x, y) ∈ E(Q) then v3(y) 6 1.

(c) State and prove the Lutz-Nagell theorem. [Results about formal groups may be
stated without proof, but not results about torsion points.]

(d) Show that for the elliptic curve in (b) we have

E(Q)tors ⊂ {0,±P,±Q,±(P + Q),±(P −Q)}.

Hence or otherwise determine E(Q)tors.

[You may wish to use the identity

(3x2 + 4a)(3x2 + a)2 − 27(x3 + ax− b)(x3 + ax + b) = 4a3 + 27b2. ]

2 Define the degree of an isogeny, and explain what it means to say the degree map
is a quadratic form. Define the trace of φ ∈ End(E) and find a formula for tr(φ2) in terms
of tr(φ) and deg(φ).

State and prove Hasse’s theorem giving upper and lower bounds on the number of
k-points on an elliptic curve defined over a finite field k. Give examples (over a finite field
k of your choice) to show that both bounds can be attained.
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3 Let φ : E → E′ be a separable isogeny of elliptic curves defined over a field k. You
may assume that char(k) 6= 2, 3 and both curves are in shorter Weierstrass form.

(a) Compute a non-zero regular differential on E.

(b) Show that φ is given by

(x, y) 7→
(
p(x)

q(x)
,
p′(x)q(x)− p(x)q′(x)

cq(x)2
y

)

where p, q ∈ k[x] are coprime polynomials and c ∈ k× is a constant.

For the rest of this question you may assume that p and q have degrees d and d− 1
where d = deg φ.

(c) Let K = k((T )) be the field of fractions of k[[T ]]. Let v : K× → Z be the discrete
valuation satisfying v(a) = 0 for all a ∈ k× and v(T ) = 1. For r > 1 let

Er(K) = {(x, y) ∈ E(K) | v(x) 6 −2r and v(y) 6 −3r} ∪ {0}.

Show that φ(Er(K)) ⊂ E′r(K).

(d) Explain how, by passing to an alternative affine piece, and defining a suitable
power series w(T ), we may identify E1(K) = {(t, w(t)) ∈ E(K) | v(t) > 1}.

(e) Define a formal group and a morphism of formal groups. Show that φ determines

a morphism of formal groups Ê → Ê′.

[You may assume any form of Hensel’s lemma, provided it is stated clearly. You
are not required to prove that Ê is a formal group.]

4 Let E be an elliptic curve over a number field K, and let n > 2 be an integer.

(a) Show that if L/K is a finite Galois extension then the natural map

K×/(K×)n → L×/(L×)n

has finite kernel.

(b) Show that if µn ⊂ K and a ∈ K× then K( n
√
a)/K is a Galois extension with

Galois group isomorphic to a subgroup of µn.

(c) State and prove analogues of (a) and (b) for the elliptic curve E.

(d) Complete the proof that E(K)/nE(K) is finite. [Results about elliptic curves
over local fields, about class groups and units of number fields, and about Kummer theory
may be quoted without proof.]
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5 Let D > 1 be a square-free integer. Given a point P = (x, y) on the elliptic curve

ED : Dy2 = x3 − x, let ∆P be the triangle with side lengths
∣∣∣x2−1

y

∣∣∣ ,
∣∣∣2xy
∣∣∣ ,
∣∣∣x2+1

y

∣∣∣ .

(a) Show that every right-angled triangle with rational side lengths and area D is
of the form ∆P for some P ∈ ED(Q) with 2P 6= 0.

(b) Compute the rank and torsion subgroup of E5(Q).

(c) Stating any properties you need of the height h : ED(Q) → R, define the
canonical height ĥ and prove that it is a quadratic form.

(d) Show that if P,Q ∈ E5(Q) with ĥ(P ) = ĥ(Q) 6= 0 then the triangles ∆P and
∆Q are the same (up to re-ordering the sides).

[You may assume that if P = (x, y) ∈ ED then the points P +T for T ∈ ED[2] have
x-coordinates x, − 1

x ,
x+1
x−1 , −x−1

x+1 .]
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