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1 (a) Briefly describe the Curry–Howard correspondence between intuitionistic pro-
positional logic (IPC) and the simply typed λ-calculus. Your answer should explain what
types, type constructors, variables, and simply typed λ-terms correspond to within IPC.

(b) What is a Heyting algebra? Show that every Heyting algebra is a distributive lattice.

(c) Provide a Kripke model that does not force the proposition (¬¬p → q) ∨ (¬¬q → p).
[You do not need to show that it is a Kripke model.]

(d) An implicational proposition is one containing no logical connectives other than →.
The implicational fragment of intuitionistic propositional calculus IPC(→) admits only
implicational propositions, along with the (→)-introduction and (→)-elimination rules
and the axiom scheme: Γ, φ `IPC(→) φ for every set of implicational propositions Γ and
implicational proposition φ.

Prove that IPC(→) is complete with respect to Kripke models, i.e., Γ `IPC(→) φ iff
for all Kripke models (S,6,), the condition S  Γ implies S  φ.

Let φ be an implicational formula and Γ be a set of implicational formulae. Conclude
that if Γ `IPC φ, then Γ `IPC(→) φ.

[You may use the soundness theorem for the Kripke semantics without proof.]

2 (a) Let T be an L-theory and n be a natural number.

Define what an n-type of T is.

Define when such an n-type is isolated and when it is omitted in an L-structureM.

State the omitting types theorem.

(b) Let I be an infinite set. Show that if U is a non-principal ultrafilter on I and X ⊆ I
is finite, then (I \X) ∈ U .

State  Loś’s theorem. Use it to construct an example of an infinite field of
characteristic p for any given prime number p. [You may assume the existence of non-
principal ultrafilters on any infinite set, as well as any algebraic fact you clearly state,
without proof.]

(c) State the Ehrenfeucht–Mostowski theorem.

Show that if T is a first-order theory admitting infinite models, then T has models
with arbitrarily large group of automorphisms. [You may use any result from the notes
without proof.]

Part III, Paper 120



3

3 (a) Define the Church numeral cn corresponding to a given natural number n.

What does it mean to say that a function Nk → N is λ-definable?

Show that the successor function succ : N → N is λ-definable.

(b) Define what it means for a combinator (i.e., a λ-term without free variables) to be a
fixed point combinator.

State and prove the fixed point theorem for the untyped λ-calculus.

Explain why the fixed point theorem for the untyped λ-calculus does not imply that
the successor function succ : N → N has fixed points, even though it is λ-definable.

(c) Show that the set of all fixed point combinators is recursively enumerable.

[You may assume that the set Λ0 of all combinators is recursively enumerable and
use any results from the course without proof.]
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