MATHEMATICAL TRIPOS Part III

Wednesday, 8 June, 2022 9:00 am to 12:00 pm

PAPER 120

LOGIC AND COMPUTABILITY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt **ALL** questions. There are **THREE** questions in total. Question 1 carries 40 marks. Questions 2 and 3 carry 30 marks each.

STATIONERY REQUIREMENTS Cover sheet

SPECIAL REQUIREMENTS None

Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) Briefly describe the *Curry–Howard correspondence* between intuitionistic propositional logic (IPC) and the simply typed λ -calculus. Your answer should explain what types, type constructors, variables, and simply typed λ -terms correspond to within IPC.

(b) What is a *Heyting algebra*? Show that every Heyting algebra is a distributive lattice.

(c) Provide a Kripke model that does not force the proposition $(\neg \neg p \rightarrow q) \lor (\neg \neg q \rightarrow p)$. [You do not need to show that it is a Kripke model.]

(d) An *implicational proposition* is one containing no logical connectives other than \rightarrow . The *implicational fragment of intuitionistic propositional calculus* IPC(\rightarrow) admits only implicational propositions, along with the (\rightarrow)-introduction and (\rightarrow)-elimination rules and the axiom scheme: $\Gamma, \phi \vdash_{\text{IPC}(\rightarrow)} \phi$ for every set of implicational propositions Γ and implicational proposition ϕ .

Prove that IPC(\rightarrow) is complete with respect to Kripke models, i.e., $\Gamma \vdash_{\text{IPC}(\rightarrow)} \phi$ iff for all Kripke models (S, \leq, \Vdash) , the condition $S \Vdash \Gamma$ implies $S \Vdash \phi$.

Let ϕ be an implicational formula and Γ be a set of implicational formulae. Conclude that if $\Gamma \vdash_{\text{IPC}} \phi$, then $\Gamma \vdash_{\text{IPC}} \phi$.

[You may use the soundness theorem for the Kripke semantics without proof.]

2 (a) Let \mathcal{T} be an \mathcal{L} -theory and n be a natural number.

Define what an *n*-type of \mathcal{T} is.

Define when such an *n*-type is *isolated* and when it is *omitted* in an \mathcal{L} -structure \mathcal{M} .

State the *omitting types theorem*.

(b) Let I be an infinite set. Show that if \mathcal{U} is a non-principal ultrafilter on I and $X \subseteq I$ is finite, then $(I \setminus X) \in \mathcal{U}$.

State Loś's theorem. Use it to construct an example of an infinite field of characteristic p for any given prime number p. [You may assume the existence of non-principal ultrafilters on any infinite set, as well as any algebraic fact you clearly state, without proof.]

(c) State the Ehrenfeucht–Mostowski theorem.

Show that if \mathcal{T} is a first-order theory admitting infinite models, then \mathcal{T} has models with arbitrarily large group of automorphisms. [You may use any result from the notes without proof.]

UNIVERSITY OF

3

3 (a) Define the *Church numeral* c_n corresponding to a given natural number n. What does it mean to say that a function $\mathbb{N}^k \to \mathbb{N}$ is λ -definable?

Show that the successor function succ: $\mathbb{N} \to \mathbb{N}$ is λ -definable.

(b) Define what it means for a combinator (i.e., a λ -term without free variables) to be a *fixed point combinator*.

State and prove the *fixed point theorem* for the untyped λ -calculus.

Explain why the fixed point theorem for the untyped λ -calculus does not imply that the successor function succ: $\mathbb{N} \to \mathbb{N}$ has fixed points, even though it is λ -definable.

(c) Show that the set of all fixed point combinators is recursively enumerable.

[You may assume that the set Λ^0 of all combinators is recursively enumerable and use any results from the course without proof.]

END OF PAPER