MATHEMATICAL TRIPOS Part III

Thursday, 2 June, 2022 $\,$ 1:30 pm to 4:30 pm

PAPER 119

CATEGORY THEORY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Define the terms monomorphism, strong monomorphism and regular monomorphism. Show that any regular monomorphism is strong, and that if two subobjects $A' \rightarrow A$, $A'' \rightarrow A$ are strong then so is their intersection (= pullback) $A' \cap A'' \rightarrow A$, if it exists.

We call a morphism *anodyne* if it is both monic and epic, and we call an object B saturated if it is injective with respect to the class of anodyne morphisms, i.e. if every diagram

where f is anodyne can be completed to a commutative triangle. Show that a strong subobject of a saturated object is saturated.

Now suppose that \mathcal{C} is complete and well-powered, and that every object A of \mathcal{C} admits a monomorphism $A \rightarrow B$ with B saturated. Show that every object admits an anodyne morphism to a saturated object [*hint*: consider the intersection of all strong subobjects of B which contain A]. Deduce that the full subcategory \mathcal{S} of saturated objects is reflective in \mathcal{C} . Show also that \mathcal{S} is balanced [*hint*: first show that epimorphisms in \mathcal{S} are also epic in \mathcal{C}].

2 Recall that a category \mathcal{C} with finite products is said to be *cartesian closed* if the functor $(-) \times A : \mathcal{C} \to \mathcal{C}$ has a right adjoint $(-)^A$, for all $A \in \text{ob } \mathcal{C}$. A full subcategory \mathcal{D} of a cartesian closed category \mathcal{C} is called an *exponential ideal* if $B \in \text{ob } \mathcal{D}$ implies $B^A \in \text{ob } \mathcal{D}$ for all $A \in \text{ob } \mathcal{C}$. Show that the preorder Sub(1) of subterminal objects (i.e. objects A such that $A \to 1$ is monic) is an exponential ideal in any cartesian closed category.

Let \mathcal{D} be a reflective subcategory of a cartesian closed category \mathcal{C} . Show that \mathcal{D} is an exponential ideal iff the reflector $L: \mathcal{C} \to \mathcal{D}$ (that is, the left adjoint of the inclusion) preserves binary products. [*Hint*: an object *B* belongs to \mathcal{D} iff every morphism $A \to B$ factors uniquely through the unit $A \to LA$.]

Let **2** denote the category $(\bullet \to \bullet)$. Show that $[\mathbf{2}, \mathbf{Set}]$ is cartesian closed [*hint*: the exponential $(B_0 \to B_1)^{(A_0 \to A_1)}$ has the form $(F \to B_1^{A_1})$, where F is the set of morphisms $(A_0 \to A_1) \to (B_0 \to B_1)$ and $B_1^{A_1}$ is the exponential in **Set**]. Deduce that the full subcategory Mono(**Set**) of $[\mathbf{2}, \mathbf{Set}]$ whose objects are monomorphisms in **Set** is also cartesian closed.

3 A functor $F: \mathcal{C} \to \mathcal{D}$ is said to be *final* if, for every $B \in \text{ob } \mathcal{D}$, the category $(B \downarrow F)$ is (nonempty and) connected. F is said to be a *discrete fibration* if, for any $A \in \text{ob } \mathcal{C}$ and $g: B \to FA$ in \mathcal{D} , there exists a unique $f \in \text{mor } \mathcal{C}$ with cod f = A and Ff = g.

(i) Given a commutative square

where F is final and G is a discrete fibration, show that there is a unique $L: \mathcal{B} \to \mathcal{C}$ with GL = K and LF = H.

(ii) Show that any functor $F : \mathcal{C} \to \mathcal{D}$ can be factored as a final functor followed by a discrete fibration. [*Hint*: construct a category \mathcal{E} whose objects are the connected components of the categories $(B \downarrow F), B \in \text{ob } \mathcal{D}$, and whose morphisms are suitable morphisms of \mathcal{D} .]

4 Explain what is meant by a *monad*, and show how every adjunction gives rise to a monad.

Let \mathcal{C} be a category, and \mathcal{D} a full subcategory of the functor category $[\mathcal{C}, \mathcal{C}]$ which is closed under composition and contains the identity functor. If \mathcal{D} has a terminal object T, show that T has a unique monad structure.

Now take $\mathcal{C} = \mathbf{Set}$, and let \mathcal{D} be the category of functors $\mathbf{Set} \to \mathbf{Set}$ which preserve finite coproducts. Show that \mathcal{D} has a terminal object, namely the functor which sends a set A to the set of all ultrafilters on A. [Recall that an ultrafilter on A is a set $U \subseteq PA$ such that (i) $B \in U$ and $B \subseteq B'$ imply $B' \in U$; (ii) $B \in U$ and $B' \in U$ imply $B \cap B' \in U$; and (iii) for every $B \subseteq A$, just one of B and $A \setminus B$ is in U. *Hint*: Given an arbitrary $F \in \text{ob } \mathcal{D}$ and $x \in FA$, consider the set of those $B \subseteq A$ for which x is in the image of $FB \to FA$.] 5 Explain carefully what is meant by the statement that filtered colimits commute with finite limits in **Set**. Give an example to show that this does not hold in **Set**^{op}.

Let X be a topological space, and let $\mathcal{O}(X)$ denote the set of open subsets of X, ordered by inclusion. By a *presheaf* (of sets) on X we mean a functor $F: \mathcal{O}(X)^{\mathrm{op}} \to \mathbf{Set}$. Given a point $x \in X$, we define the *stalk* F_x of F at x to be the colimit of its restriction to $(N_x)^{\mathrm{op}}$, where N_x is the poset of open neighbourhoods of x. Show that the functor $[\mathcal{O}(X)^{\mathrm{op}}, \mathbf{Set}] \to \mathbf{Set}$ sending F to F_x preserves finite limits and has a right adjoint.

A presheaf F is called a *sheaf* if, whenever we are given a family $(U_i \mid i \in I)$ of open sets and a family of elements $s_i \in F(U_i)$ which are compatible in the sense that s_i and s_j have the same image in $F(U_i \cap U_j)$ for each pair (i, j), then there is a unique $s \in F(\bigcup_{i \in I} U_i)$ whose image in $F(U_i)$ is s_i , for each i. We write $\mathbf{Sh}(X) \subseteq [\mathcal{O}(X)^{\mathrm{op}}, \mathbf{Set}]$ for the full subcategory of sheaves. Show that the functor $\mathbf{Sh}(X) \to \mathbf{Set}^X$ sending a sheaf F to the family $(F_x \mid x \in X)$ of all its stalks is faithful, and deduce that it is comonadic. [You may assume that $\mathbf{Sh}(X)$ is closed under arbitrary limits in $[\mathcal{O}(X)^{\mathrm{op}}, \mathbf{Set}]$, and that it is balanced.]

6 Explain what is meant by a semi-additive category, and prove that binary products and coproducts coincide (in a sense to be explained) if they exist in such a category.

Let $(f,g): A \rightrightarrows B$ be a reflexive parallel pair in an additive category C. Show that (f,g) has the structure of an internal groupoid in C: that is, for any object C, the elements of C(C, B) are the objects of a groupoid whose morphisms are the elements of C(C, A), with domain and codomain operations given by composition with f and g respectively. [*Hint*: the composite of a pair $(x, y): C \rightrightarrows B$ with gx = fy is x + y - rgx, where r is a common splitting for f and g.]

By considering the usual order relation on \mathbb{N} as an object in the category of commutative monoids, or otherwise, show that we cannot weaken 'additive' to 'semi-additive' in the previous paragraph.

END OF PAPER