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1 Define the terms monomorphism, strong monomorphism and regular monomorph-
ism. Show that any regular monomorphism is strong, and that if two subobjects A′ � A,
A′′ � A are strong then so is their intersection (= pullback) A′ ∩A′′ � A, if it exists.

We call a morphism anodyne if it is both monic and epic, and we call an object
B saturated if it is injective with respect to the class of anodyne morphisms, i.e. if every
diagram

A′ f
> A

∨
B

where f is anodyne can be completed to a commutative triangle. Show that a strong
subobject of a saturated object is saturated.

Now suppose that C is complete and well-powered, and that every object A of
C admits a monomorphism A � B with B saturated. Show that every object admits
an anodyne morphism to a saturated object [hint : consider the intersection of all strong
subobjects of B which contain A]. Deduce that the full subcategory S of saturated objects
is reflective in C. Show also that S is balanced [hint : first show that epimorphisms in S
are also epic in C].

2 Recall that a category C with finite products is said to be cartesian closed if the
functor (−)×A : C → C has a right adjoint (−)A, for all A ∈ ob C. A full subcategory D of
a cartesian closed category C is called an exponential ideal if B ∈ ob D implies BA ∈ ob D
for all A ∈ ob C. Show that the preorder Sub(1) of subterminal objects (i.e. objects A
such that A→ 1 is monic) is an exponential ideal in any cartesian closed category.

Let D be a reflective subcategory of a cartesian closed category C. Show that D is
an exponential ideal iff the reflector L : C → D (that is, the left adjoint of the inclusion)
preserves binary products. [Hint : an object B belongs to D iff every morphism A → B
factors uniquely through the unit A→ LA.]

Let 2 denote the category (• → •). Show that [2,Set] is cartesian closed [hint :
the exponential (B0 → B1)

(A0→A1) has the form (F → BA1
1 ), where F is the set of

morphisms (A0 → A1)→ (B0 → B1) and BA1
1 is the exponential in Set]. Deduce that the

full subcategory Mono(Set) of [2,Set] whose objects are monomorphisms in Set is also
cartesian closed.
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3 A functor F : C → D is said to be final if, for every B ∈ ob D, the category (B ↓ F )
is (nonempty and) connected. F is said to be a discrete fibration if, for any A ∈ ob C and
g : B → FA in D, there exists a unique f ∈ mor C with cod f = A and Ff = g.

(i) Given a commutative square

A H
> C

∨
F

∨
G

B K
> D

where F is final and G is a discrete fibration, show that there is a unique L : B → C with
GL = K and LF = H.

(ii) Show that any functor F : C → D can be factored as a final functor followed
by a discrete fibration. [Hint : construct a category E whose objects are the connected
components of the categories (B ↓ F ), B ∈ ob D, and whose morphisms are suitable
morphisms of D.]

4 Explain what is meant by a monad , and show how every adjunction gives rise to a
monad.

Let C be a category, and D a full subcategory of the functor category [C, C] which
is closed under composition and contains the identity functor. If D has a terminal object
T , show that T has a unique monad structure.

Now take C = Set, and let D be the category of functors Set→ Set which preserve
finite coproducts. Show that D has a terminal object, namely the functor which sends a
set A to the set of all ultrafilters on A. [Recall that an ultrafilter on A is a set U ⊆ PA
such that (i) B ∈ U and B ⊆ B′ imply B′ ∈ U ; (ii) B ∈ U and B′ ∈ U imply B ∩B′ ∈ U ;
and (iii) for every B ⊆ A, just one of B and A \ B is in U . Hint : Given an arbitrary
F ∈ ob D and x ∈ FA, consider the set of those B ⊆ A for which x is in the image of
FB → FA.]
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5 Explain carefully what is meant by the statement that filtered colimits commute
with finite limits in Set. Give an example to show that this does not hold in Setop.

Let X be a topological space, and let O(X) denote the set of open subsets of X,
ordered by inclusion. By a presheaf (of sets) on X we mean a functor F : O(X)op → Set.
Given a point x ∈ X, we define the stalk Fx of F at x to be the colimit of its restriction
to (Nx)op, where Nx is the poset of open neighbourhoods of x. Show that the functor
[O(X)op,Set]→ Set sending F to Fx preserves finite limits and has a right adjoint.

A presheaf F is called a sheaf if, whenever we are given a family (Ui | i ∈ I) of
open sets and a family of elements si ∈ F (Ui) which are compatible in the sense that
si and sj have the same image in F (Ui ∩ Uj) for each pair (i, j), then there is a unique
s ∈ F (

⋃
i∈I Ui) whose image in F (Ui) is si, for each i. We write Sh(X) ⊆ [O(X)op,Set]

for the full subcategory of sheaves. Show that the functor Sh(X)→ SetX sending a sheaf
F to the family (Fx | x ∈ X) of all its stalks is faithful, and deduce that it is comonadic.
[You may assume that Sh(X) is closed under arbitrary limits in [O(X)op,Set], and that
it is balanced.]

6 Explain what is meant by a semi-additive category, and prove that binary products
and coproducts coincide (in a sense to be explained) if they exist in such a category.

Let (f, g) : A ⇒ B be a reflexive parallel pair in an additive category C. Show that
(f, g) has the structure of an internal groupoid in C: that is, for any object C, the elements
of C (C,B) are the objects of a groupoid whose morphisms are the elements of C (C,A),
with domain and codomain operations given by composition with f and g respectively.
[Hint : the composite of a pair (x, y) : C ⇒ B with gx = fy is x + y − rgx, where r is a
common splitting for f and g.]

By considering the usual order relation on N as an object in the category of
commutative monoids, or otherwise, show that we cannot weaken ‘additive’ to ‘semi-
additive’ in the previous paragraph.

END OF PAPER
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