MATHEMATICAL TRIPOS Part III

Monday, 6 June, 2022 $\quad 1{:}30~\mathrm{pm}$ to 4:30 pm

PAPER 117

FIVE WAYS TO THINK ABOUT PRIMES

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let \mathcal{P} be a set of primes, $z \ge 3$, and

$$P_z := \prod_{\substack{p \in \mathcal{P} \\ p < z}} p.$$

Let $\mathcal{A} = (a_n)_{n=1}^{\infty}$ be a sequence of non-negative real numbers.

(a) Define $|\mathcal{A}_d|$. What does it mean for \mathcal{A} to have distribution $(X, P_z, g, (r_d))$?

(b) Define $S(\mathcal{A}, \mathcal{P}, z)$ in terms of the values a_n . State the general Selberg sieve upper bound for $S(\mathcal{A}, \mathcal{P}, z)$ when the sequence \mathcal{A} has distribution $(X, P_z, g, (r_d))$, using sieve weights with level of support D. [You need not provide the explicit form of the sieve weights themselves.]

(c) Suppose

$$a_n = \begin{cases} 1 & \text{if } n = m(m+2)(m+6) \text{ for some } m \in \mathbb{N} \text{ with } m \leq X \\ 0 & \text{otherwise.} \end{cases}$$

Find a suitable g for which \mathcal{A} has distribution $(X, P_z, g, (r_d))$, and provide an upper bound on the remainders r_d . Your bound should involve the quantity $\omega(d)$, which denotes the number of distinct prime divisors of d counted without multiplicity.

(d) Prove that there is an absolute constant c > 0 such that, for any parameters z and D satisfying $3 \leq z \leq D$,

$$\sum_{p \le z} \frac{1}{p(\log p)^3} \exp\left(-\frac{1}{2} \frac{\log D}{\log p}\right) \ll \frac{1}{(\log D)^3} \exp\left(-c \frac{\log D}{\log z}\right).$$

[You may assume Chebyshev's estimates or the Prime Number Theorem without proof.]

(e) By using \mathcal{A} from part (c), choosing a suitable set of primes \mathcal{P} , choosing suitable values for z and D, and using a form of Buchstab's identity, use the Selberg sieve to prove that there is an absolute constant C for which there are infinitely many $m \in \mathbb{N}$ with

$$\omega(m) + \omega(m+2) + \omega(m+6) \leqslant C.$$

[You may assume Mertens' estimates without proof, and the bound $k^{\omega(n)} \ll_{k,\varepsilon} n^{\varepsilon}$, valid for all $k \in \mathbb{N}$ and $\varepsilon > 0$.]

(f) Describe very briefly any changes that are required in order to adapt your method from the previous parts to prove the following: there is an absolute constant C for which there are infinitely many $m \in \mathbb{N}$ with

$$\omega(m) + \omega(m+1) + \omega(m+2) \leqslant C.$$

Part III, Paper 117

2 [Throughout this question, you do not need to formally justify any valid application of Fubini's theorem.]

(a) Let $F : \mathbb{R}_{>0} \longrightarrow \mathbb{R}$ be a smooth compactly supported function.

Define the Mellin transform \tilde{F} , giving the range where \tilde{F} is well-defined. State the Mellin inversion formula for F and its range of validity.

Suppose in addition that $|\tilde{F}(\sigma + it)| = O(\exp(-|t|^{1/2}))$ for all $\sigma \in (0,2)$ and for all $t \in \mathbb{R}$. Sketch a proof that there is some absolute constant c > 0 for which, for all $X \ge 3$,

$$\sum_{n \ge 1} \Lambda(n) F\left(\frac{n}{X}\right) = C_{F,X} + O(X^{1 - \frac{c}{\log \log X}}),$$

where $C_{F,X}$ is some explicit quantity depending on X and F (which you should determine).

[Any results from the course on the size of $|\zeta(s)|$, $|\zeta'(s)|$, $|\zeta(s)|^{-1}$, on properties of Dirichlet series, and about the location of the zeros and poles of $\zeta(s)$ may be assumed without proof, provided they are clearly stated when used. You may not assume the Prime Number Theorem.]

(b) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a smooth function supported on [-1,1], with f(0) = 1, and let

$$g(t) := \int_{-\infty}^{\infty} e^x f(x) e(-tx) \, dx.$$

Let $Y \ge X \ge 2$, and fix $D = X^{1/10}$.

Show that

$$\sum_{Y < n \leqslant Y + X} \left(\sum_{d \mid n} \mu(d) f\left(\frac{\log d}{\log D}\right) \right)^2 \ge \pi(Y + X) - \pi(Y).$$

By expanding the square and using the Fourier inversion formula, show that

$$\sum_{Y < n \leqslant Y + X} \left(\sum_{d|n} \mu(d) f\left(\frac{\log d}{\log D}\right) \right)^2 = X \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(t_1) g(t_2) H(t_1, t_2, D) \, dt_1 \, dt_2 + O(D^2), \quad (\dagger)$$

where $H(t_1, t_2, D)$ is an absolutely uniformly convergent infinite product over primes that you should define. [You need not explain why this infinite product converges.]

Assuming that for all $t_1, t_2 \in \mathbb{R}$

$$|H(t_1, t_2, D)| \ll \left| \zeta \left(1 + \frac{1 - 2\pi i t_1}{\log D} \right) \right|^{-1} \left| \zeta \left(1 + \frac{1 - 2\pi i t_2}{\log D} \right) \right|^{-1} \left| \zeta \left(1 + \frac{2 - 2\pi i t_1 - 2\pi i t_2}{\log D} \right) \right|,$$

by truncating the range of integration in (†) deduce that $\pi(Y + X) - \pi(Y) \ll \frac{X}{\log X}$. [You may not appeal to the usual Selberg sieve, but may use any results from the course on $\zeta(s)$ and on compactly supported smooth functions, provided they are clearly stated when used.]

Part III, Paper 117

[TURN OVER]

3 (a) State Vaughan's identity for the von Mangoldt function $\Lambda(n)$ with thresholds U and V. If $UV \leq N$, give the corresponding Vaughan's identity expansion of the sum

$$\sum_{n\leqslant N}\Lambda(n)e(\alpha n^2)$$

For the rest of this question, let $\alpha \in \mathbb{R}$, and suppose $a, q \in \mathbb{N}$ with $q \ge 2$, $a \le q$, gcd(a,q) = 1, and $|\alpha - \frac{a}{q}| \le \frac{1}{q^2}$.

(b) Show that for all $M, R \ge 2$ and $m_0 \in \mathbb{R}$,

$$\sum_{m_0 \leq m < m_0 + M} \min(R, \|\alpha m\|^{-1}) \ll (\log q) \Big(\frac{MR}{q} + M + R + q\Big),$$

where $\|\alpha m\|$ denotes the distance from αm to the nearest integer.

(c) Let $R, T \ge 2$, and let $(b_t)_{T < t \le 2T}$ and $(c_r)_{R < r \le 2R}$ be arbitrary complex coefficients. Show that

$$\Big|\sum_{\substack{T < t \leq 2T \\ R < r \leq 2R}} b_t c_r e(\alpha r^2 t^2)\Big| \ll \|b\|_2 \|c\|_2 \Big(\sum_{\substack{T < t_1, t_2 \leq 2T \\ R < r_1, r_2 \leq 2R}} e(\alpha (t_1^2 - t_2^2)(r_1^2 - r_2^2))\Big)^{1/4}, \qquad (*)$$

where $||b||_2 := \left(\sum_{T < t \le 2T} |b_t|^2\right)^{1/2}$ and $||c||_2 := \left(\sum_{R < r \le 2R} |c_r|^2\right)^{1/2}$.

(d) Make the substitution $s_1 = r_1 - r_2$, $s_2 = r_1 + r_2$, $u_1 = t_1 - t_2$, $u_2 = t_1 + t_2$. By considering an inner sum over s_1 , or otherwise, establish that there is some absolute constant C > 0 for which the left-hand side of (*) is

$$\ll \|b\|_2 \|c\|_2 \Big(R^{1/4} T^{1/2} + R^{1/2} T^{1/4} + \Big(\sum_{m \leqslant CRT^2} \tau_4(m) \min(R, \|\alpha m\|^{-1}) \Big)^{1/4} \Big),$$

where $\tau_4 = 1 \star 1 \star 1 \star 1$. [You may use the standard upper bound on the absolute value of sums of the form $\sum_{n \in I} e(\beta n)$ for an interval I without proof, provided this bound is clearly stated when used.]

(e) By splitting into cases according to whether $\tau_4(n) < X$ or $\tau_4(n) \ge X$, show that for all $X \ge 1$ the left-hand side of (*) is

$$\ll \|b\|_2 \|c\|_2 (\log q) (\log RT)^{O(1)} R^{1/2} T^{1/2} \Big(\frac{1}{X^{1/4}} + \frac{X^{1/4}}{q^{1/4}} + \frac{X^{1/4}}{R^{1/4}} + \frac{X^{1/4} q^{1/4}}{R^{1/2} T^{1/2}} + \frac{1}{T^{1/4}} \Big).$$
(†)

[You may use without proof the estimate $\sum_{n \leq N} \tau_4(n)^2 \ll N(\log N)^{O(1)}$, valid for all $N \geq 2$.]

(f) Suppose RT = N. Discuss the ranges of R, T, q, X for which (†) is smaller than the trivial bound $||b||_2 ||c||_2 N^{1/2}$ by a large power of log N.

Part III, Paper 117

4 Let $N \in \mathbb{N}$, and let \mathcal{H}_N be the set of functions $g: [N] \longrightarrow \mathbb{R}$.

(a) Let $\varepsilon > 0$. Suppose that $g_1, g_2 \in \mathcal{H}_N$ with

$$\sup_{\alpha \in [0,1]} \Big| \sum_{n \leqslant N} g_1(n) e(\alpha n) - \sum_{n \leqslant N} g_2(n) e(\alpha n) \Big| \leqslant \varepsilon N.$$

Suppose moreover that for i = 1, 2,

$$\int_{0}^{1} \Big| \sum_{n \leqslant N} g_i(n) e(\alpha n) \Big|^3 d\alpha \ll N^2.$$

Defining

$$T(g_i, g_i, g_i, g_i) := \sum_{\substack{n_1, n_2, n_3, n_4 \leq N\\n_1 + 2n_2 + 3n_3 = 4n_4}} g_i(n_1)g_i(n_2)g_i(n_3)g_i(n_4),$$

prove that $|T(g_1, g_1, g_1, g_1) - T(g_2, g_2, g_2, g_2)| = O(\varepsilon N^3)$. [If your proof splits into several similar cases, you need only present the details of one case. Any standard inequalities may be used without proof.]

Let $\mathcal{F} \subset \mathcal{H}_N$ be a set of functions of the form $f: [N] \longrightarrow [-1, 1]$.

(b) For $g_1, g_2 \in \mathcal{H}_N$ define the inner-product $\langle g_1, g_2 \rangle$. For $g \in \mathcal{H}_N$, define the quantities $\|g\|_{\mathcal{F}}$ and $\|g\|_{\mathcal{F}}^*$.

(c) Suppose that $||g_1g_2||_{\mathcal{F}}^* \leq ||g_1||_{\mathcal{F}}^* ||g_2||_{\mathcal{F}}^*$ for all $g_1, g_2 \in \mathcal{H}_N$. Suppose further that \mathcal{F} is closed and convex, the constant 1 function is in \mathcal{F} , and that $f \in \mathcal{F}$ if and only if $-f \in \mathcal{F}$.

Prove that there is some absolute constant C (independent of N) for which the following holds: for all $\varepsilon \in (0, 1/2]$, and for all $\nu \in \mathcal{H}_N$ with $\nu \ge 0$, $\sum_{n \le N} \nu(n) \le N$, and

$$\|\nu - 1\|_{\mathcal{F}} \leqslant \exp(-\varepsilon^{-C}),$$

if $g_1 \in \mathcal{H}_N$ with $0 \leq g_1 \leq \nu$, then there exists $g_2 \in \mathcal{H}_N$ with $0 \leq g_2 \leq 1$ and

$$\|g_1 - g_2\|_{\mathcal{F}} \leqslant \varepsilon.$$

[You may assume that there is some absolute constant C > 0 with the following property: for all $\varepsilon \in [0, 1/2)$, there exists a polynomial $P_{\varepsilon}(T) := \sum_{i=0}^{m} a_i T_i$ with real coefficients such that

$$(m+1)\varepsilon^{-m}\max_i |a_i| \leq \exp(\varepsilon^{-C})$$

and

$$\sup_{t \in [-\frac{10}{\varepsilon}, \frac{10}{\varepsilon}]} |P_{\varepsilon}(t) - \max(0, t)| \leq \frac{\varepsilon}{100}$$

You may also assume that if $A, B \subset \mathbb{R}^N$ then A + B is closed and convex provided A is closed, bounded, and convex, and B is closed and convex. If you appeal to a version of the separating hyperplane theorem, you should clearly state the theorem. If you wish to use the dense model theorem, however, you should first prove it.]

Part III, Paper 117

[TURN OVER]