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1 Let P be a set of primes, z > 3, and

Pz :=
∏

p∈P
p<z

p.

Let A = (an)∞n=1 be a sequence of non-negative real numbers.

(a) Define |Ad|. What does it mean for A to have distribution (X,Pz, g, (rd))?

(b) Define S(A,P, z) in terms of the values an. State the general Selberg sieve
upper bound for S(A,P, z) when the sequence A has distribution (X,Pz, g, (rd)), using
sieve weights with level of support D. [You need not provide the explicit form of the sieve
weights themselves.]

(c) Suppose

an =

{
1 if n = m(m + 2)(m + 6) for some m ∈ N with m 6 X

0 otherwise.
.

Find a suitable g for which A has distribution (X,Pz, g, (rd)), and provide an upper
bound on the remainders rd. Your bound should involve the quantity ω(d), which denotes
the number of distinct prime divisors of d counted without multiplicity.

(d) Prove that there is an absolute constant c > 0 such that, for any parameters z
and D satisfying 3 6 z 6 D,

∑

p6z

1

p(log p)3
exp

(
− 1

2

logD

log p

)
� 1

(logD)3
exp

(
− c

logD

log z

)
.

[You may assume Chebyshev’s estimates or the Prime Number Theorem without proof.]

(e) By using A from part (c), choosing a suitable set of primes P, choosing suit-
able values for z and D, and using a form of Buchstab’s identity, use the Selberg sieve to
prove that there is an absolute constant C for which there are infinitely many m ∈ N with

ω(m) + ω(m + 2) + ω(m + 6) 6 C.

[You may assume Mertens’ estimates without proof, and the bound kω(n) �k,ε nε, valid
for all k ∈ N and ε > 0.]

(f) Describe very briefly any changes that are required in order to adapt your method
from the previous parts to prove the following: there is an absolute constant C for which
there are infinitely many m ∈ N with

ω(m) + ω(m + 1) + ω(m + 2) 6 C.
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2 [Throughout this question, you do not need to formally justify any valid application
of Fubini’s theorem.]

(a) Let F : R>0 −→ R be a smooth compactly supported function.

Define the Mellin transform F̃ , giving the range where F̃ is well-defined. State
the Mellin inversion formula for F and its range of validity.

Suppose in addition that |F̃ (σ + it)| = O(exp(−|t|1/2)) for all σ ∈ (0, 2) and for
all t ∈ R. Sketch a proof that there is some absolute constant c > 0 for which, for all
X > 3, ∑

n>1

Λ(n)F
( n
X

)
= CF,X +O(X

1− c
log logX ),

where CF,X is some explicit quantity depending on X and F (which you should determine).

[Any results from the course on the size of |ζ(s)|, |ζ ′(s)|, |ζ(s)|−1, on properties of
Dirichlet series, and about the location of the zeros and poles of ζ(s) may be assumed
without proof, provided they are clearly stated when used. You may not assume the
Prime Number Theorem.]

(b) Let f : R −→ R be a smooth function supported on [−1, 1], with f(0) = 1,
and let

g(t) :=

∞∫

−∞

exf(x)e(−tx) dx.

Let Y > X > 2, and fix D = X1/10.

Show that ∑

Y <n6Y+X

(∑

d|n
µ(d)f

( log d

logD

))2
> π(Y +X)− π(Y ).

By expanding the square and using the Fourier inversion formula, show that

∑

Y <n6Y+X

(∑

d|n
µ(d)f

( log d

logD

))2
= X

∞∫

−∞

∞∫

−∞

g(t1)g(t2)H(t1, t2, D) dt1 dt2 +O(D2), (†)

where H(t1, t2, D) is an absolutely uniformly convergent infinite product over primes that
you should define. [You need not explain why this infinite product converges.]

Assuming that for all t1, t2 ∈ R

|H(t1, t2, D)| �
∣∣∣ζ
(

1 +
1− 2πit1

logD

)∣∣∣
−1∣∣∣ζ

(
1 +

1− 2πit2
logD

)∣∣∣
−1∣∣∣ζ

(
1 +

2− 2πit1 − 2πit2
logD

)∣∣∣,

by truncating the range of integration in (†) deduce that π(Y +X)− π(Y )� X
logX . [You

may not appeal to the usual Selberg sieve, but may use any results from the course on
ζ(s) and on compactly supported smooth functions, provided they are clearly stated when
used.]
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3 (a) State Vaughan’s identity for the von Mangoldt function Λ(n) with thresholds
U and V . If UV 6 N , give the corresponding Vaughan’s identity expansion of the sum

∑

n6N

Λ(n)e(αn2).

For the rest of this question, let α ∈ R, and suppose a, q ∈ N with q > 2, a 6 q,
gcd(a, q) = 1, and |α− a

q | 6 1
q2

.

(b) Show that for all M,R > 2 and m0 ∈ R,

∑

m06m<m0+M

min(R, ‖αm‖−1)� (log q)
(MR

q
+M +R+ q

)
,

where ‖αm‖ denotes the distance from αm to the nearest integer.

(c) Let R, T > 2, and let (bt)T<t62T and (cr)R<r62R be arbitrary complex coeffi-
cients. Show that

∣∣∣
∑

T<t62T
R<r62R

btcre(αr
2t2)

∣∣∣� ‖b‖2‖c‖2
( ∑

T<t1,t262T
R<r1,r262R

e(α(t21 − t22)(r21 − r22))
)1/4

, (∗)

where ‖b‖2 :=
( ∑

T<t62T

|bt|2
)1/2

and ‖c‖2 :=
( ∑

R<r62R

|cr|2
)1/2

.

(d) Make the substitution s1 = r1 − r2, s2 = r1 + r2, u1 = t1 − t2, u2 = t1 + t2.
By considering an inner sum over s1, or otherwise, establish that there is some absolute
constant C > 0 for which the left-hand side of (∗) is

� ‖b‖2‖c‖2
(
R1/4T 1/2 +R1/2T 1/4 +

( ∑

m6CRT 2

τ4(m) min(R, ‖αm‖−1)
)1/4)

,

where τ4 = 1 ? 1 ? 1 ? 1. [You may use the standard upper bound on the absolute value
of sums of the form

∑
n∈I e(βn) for an interval I without proof, provided this bound is

clearly stated when used.]

(e) By splitting into cases according to whether τ4(n) < X or τ4(n) > X, show
that for all X > 1 the left-hand side of (∗) is

� ‖b‖2‖c‖2(log q)(logRT )O(1)R1/2T 1/2
( 1

X1/4
+
X1/4

q1/4
+
X1/4

R1/4
+
X1/4q1/4

R1/2T 1/2
+

1

T 1/4

)
. (†)

[You may use without proof the estimate
∑

n6N τ4(n)2 � N(logN)O(1), valid for all
N > 2.]

(f) Suppose RT = N . Discuss the ranges of R, T, q,X for which (†) is smaller
than the trivial bound ‖b‖2‖c‖2N1/2 by a large power of logN .
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4 Let N ∈ N, and let HN be the set of functions g : [N ] −→ R.

(a) Let ε > 0. Suppose that g1, g2 ∈ HN with

sup
α∈[0,1]

∣∣∣
∑

n6N
g1(n)e(αn)−

∑

n6N
g2(n)e(αn)

∣∣∣ 6 εN.

Suppose moreover that for i = 1, 2,

1∫

0

∣∣∣
∑

n6N
gi(n)e(αn)

∣∣∣
3
dα� N2.

Defining

T (gi, gi, gi, gi) :=
∑

n1,n2,n3,n46N
n1+2n2+3n3=4n4

gi(n1)gi(n2)gi(n3)gi(n4),

prove that |T (g1, g1, g1, g1)− T (g2, g2, g2, g2)| = O(εN3). [If your proof splits into several
similar cases, you need only present the details of one case. Any standard inequalities
may be used without proof.]

Let F ⊂ HN be a set of functions of the form f : [N ] −→ [−1, 1].

(b) For g1, g2 ∈ HN define the inner-product 〈g1, g2〉. For g ∈ HN , define the
quantities ‖g‖F and ‖g‖∗F .

(c) Suppose that ‖g1g2‖∗F 6 ‖g1‖∗F‖g2‖∗F for all g1, g2 ∈ HN . Suppose further that F is
closed and convex, the constant 1 function is in F , and that f ∈ F if and only if −f ∈ F .

Prove that there is some absolute constant C (independent of N) for which the following
holds: for all ε ∈ (0, 1/2], and for all ν ∈ HN with ν > 0,

∑
n6N ν(n) 6 N , and

‖ν − 1‖F 6 exp(−ε−C),

if g1 ∈ HN with 0 6 g1 6 ν, then there exists g2 ∈ HN with 0 6 g2 6 1 and

‖g1 − g2‖F 6 ε.

[You may assume that there is some absolute constant C > 0 with the following property:
for all ε ∈ [0, 1/2), there exists a polynomial Pε(T ) :=

∑m
i=0 aiTi with real coefficients such

that
(m+ 1)ε−m max

i
|ai| 6 exp(ε−C)

and
sup

t∈[− 10
ε
, 10
ε
]

|Pε(t)−max(0, t)| 6 ε

100
.

You may also assume that if A,B ⊂ RN then A + B is closed and convex provided A is
closed, bounded, and convex, and B is closed and convex. If you appeal to a version of
the separating hyperplane theorem, you should clearly state the theorem. If you wish to
use the dense model theorem, however, you should first prove it.]
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END OF PAPER
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