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1 Fix positive integers m and n with m 6 n, and let Xm,n be the set of m × n real
matrices of rank m. Given a multi-index I = (i1, . . . , im) from {1, . . . , n}, and an m × n
matrix M , let MI be the m×m matrix made up of the columns of M labelled by I.

(a) By considering the sets UI , defined by

UI = {M ∈ Xm,n : MI is invertible},

show that Xm,n is naturally a smooth manifold of dimension mn.

Let Em,n = {(M, v) ∈ Xm,n × Rn : v ∈ kerM}, and let π : Em,n → Xm,n be the
map (M, v) 7→M .

(b) Show that Em,n is a submanifold of Xm,n × Rn.

(c) Prove that π : Em,n → Xm,n is a vector bundle of rank n−m. [Hint: You may
find it helpful to decompose M into MI and the remaining columns MI′, and similarly to
decompose v into the entries vI labelled by I and the remaining entries vI′.]

(d) Write down a natural smooth map F : S2 → X1,3 and explain briefly why F ∗E1,3

is isomorphic to TS2. Assuming that TS2 does not admit a nowhere-zero section, deduce
that E1,3 is non-trivial.

2 Let X be an oriented n-manifold-with-boundary, and let F : ∂X → X denote the
inclusion map.

(a) State and prove Stokes’s theorem for X, explaining clearly how ∂X is oriented.
You should comment briefly on why any sums you write down make sense.

Now suppose X carries a Riemannian metric g, and equip ∂X with the metric F ∗g.
Let ωX and ω∂X denote the positively oriented unit volume forms on X and ∂X.

Given a point p ∈ ∂X, let v1, . . . , vn be positively oriented orthonormal vector fields
on X defined in a neighbourhood U of p. Assume that on ∂U the vector field v1 is
orthogonal to ∂X and points outwards.

(b) By considering the dual 1-forms, show that on ∂U we have

ω∂X = F ∗(ιv1ωX).

(c) Let X be the closed unit ball Dn in Rn with the Euclidean metric
∑n

i=1(dx
i)2.

Write down coordinate expressions for ωX and ω∂X in terms of the xi. Deduce that

∫

∂X
ω∂X = n

∫

X
ωX ,

i.e. that the (n − 1)-dimensional volume of the unit (n − 1)-sphere is n times the n-
dimensional volume of the ball it bounds.
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3 Let v be a vector field on a manifold X.

(a) Define a local flow of v, and the Lie derivative of a differential form α along v.
State Cartan’s magic formula.

Now let G be a Lie group. For g ∈ G let Lg and Rg denote left- and right-translation
by g respectively, and for ξ ∈ g let lξ be the associated left-invariant vector field.

(b) Show that Φt = Rexp(tξ) defines a global flow of lξ, and hence that a differential
form α on G satisfies Llξα = 0 for all ξ if and only if the map

f : G→ Ω•(G) given by f(g) = R∗
gα

is locally constant. [You may assume basic properties of the exponential map.]

(c) Suppose that G is connected, and let α be a left-invariant 1-form on G. Show
that α is closed if and only if it’s bi-invariant. Must this still be true if we drop the
connectedness condition?

4 (a) State the differential forms version of the Frobenius integrability theorem
and give, with brief justification, examples of integrable and non-integrable 2-plane
distributions on R3.

Let A be a connection on a principal G-bundle π : P → B.

(b) Define the horizontal distribution H and curvature F of A, and show that H is
integrable if and only if F = 0.

Now let B be the cylinder S1 × R with local coordinates (θ, t), and let P be the
trivial R-bundle with fibre coordinate z. Consider the distribution D on P spanned by
∂θ + f∂z and ∂t + g∂z, where f and g are smooth functions of θ, t, and z.

(c) State and prove necessary and sufficient conditions on f and g for D to be the
horizontal distribution of a connection A on P . If these conditions hold, compute F .

(d) For f = t cos θ + 1 and g = sin θ, does the connection admit local horizontal
sections? What about global horizontal sections?
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