MATHEMATICAL TRIPOS Part III

Tuesday, 7 June, 2022 $\quad 1{:}30~\mathrm{pm}$ to $4{:}30~\mathrm{pm}$

PAPER 115

DIFFERENTIAL GEOMETRY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Fix positive integers m and n with $m \leq n$, and let $X_{m,n}$ be the set of $m \times n$ real matrices of rank m. Given a multi-index $I = (i_1, \ldots, i_m)$ from $\{1, \ldots, n\}$, and an $m \times n$ matrix M, let M_I be the $m \times m$ matrix made up of the columns of M labelled by I.

(a) By considering the sets U_I , defined by

$$U_I = \{ M \in X_{m,n} : M_I \text{ is invertible} \},\$$

show that $X_{m,n}$ is naturally a smooth manifold of dimension mn.

Let $E_{m,n} = \{(M, \mathbf{v}) \in X_{m,n} \times \mathbb{R}^n : \mathbf{v} \in \ker M\}$, and let $\pi : E_{m,n} \to X_{m,n}$ be the map $(M, \mathbf{v}) \mapsto M$.

(b) Show that $E_{m,n}$ is a submanifold of $X_{m,n} \times \mathbb{R}^n$.

(c) Prove that $\pi: E_{m,n} \to X_{m,n}$ is a vector bundle of rank n-m. [Hint: You may find it helpful to decompose M into M_I and the remaining columns $M_{I'}$, and similarly to decompose \vee into the entries \vee_I labelled by I and the remaining entries $\vee_{I'}$.]

(d) Write down a natural smooth map $F: S^2 \to X_{1,3}$ and explain briefly why $F^*E_{1,3}$ is isomorphic to TS^2 . Assuming that TS^2 does not admit a nowhere-zero section, deduce that $E_{1,3}$ is non-trivial.

2 Let X be an oriented *n*-manifold-with-boundary, and let $F : \partial X \to X$ denote the inclusion map.

(a) State and prove Stokes's theorem for X, explaining clearly how ∂X is oriented. You should comment briefly on why any sums you write down make sense.

Now suppose X carries a Riemannian metric g, and equip ∂X with the metric F^*g . Let ω_X and $\omega_{\partial X}$ denote the positively oriented unit volume forms on X and ∂X .

Given a point $p \in \partial X$, let v_1, \ldots, v_n be positively oriented orthonormal vector fields on X defined in a neighbourhood U of p. Assume that on ∂U the vector field v_1 is orthogonal to ∂X and points outwards.

(b) By considering the dual 1-forms, show that on ∂U we have

$$\omega_{\partial X} = F^*(\iota_{\mathsf{v}_1}\omega_X).$$

(c) Let X be the closed unit ball D^n in \mathbb{R}^n with the Euclidean metric $\sum_{i=1}^n (dx^i)^2$. Write down coordinate expressions for ω_X and $\omega_{\partial X}$ in terms of the x^i . Deduce that

$$\int_{\partial X} \omega_{\partial X} = n \int_X \omega_X,$$

i.e. that the (n-1)-dimensional volume of the unit (n-1)-sphere is n times the ndimensional volume of the ball it bounds.

Part III, Paper 115

3 Let v be a vector field on a manifold X.

(a) Define a *local flow* of v, and the *Lie derivative* of a differential form α along v. State Cartan's magic formula.

Now let G be a Lie group. For $g \in G$ let L_g and R_g denote left- and right-translation by g respectively, and for $\xi \in \mathfrak{g}$ let l_{ξ} be the associated left-invariant vector field.

(b) Show that $\Phi^t = R_{\exp(t\xi)}$ defines a global flow of I_{ξ} , and hence that a differential form α on G satisfies $\mathcal{L}_{I_{\xi}} \alpha = 0$ for all ξ if and only if the map

$$f: G \to \Omega^{\bullet}(G)$$
 given by $f(g) = R_g^* \alpha$

is locally constant. [You may assume basic properties of the exponential map.]

(c) Suppose that G is connected, and let α be a left-invariant 1-form on G. Show that α is closed if and only if it's bi-invariant. Must this still be true if we drop the connectedness condition?

4 (a) State the differential forms version of the Frobenius integrability theorem and give, with brief justification, examples of integrable and non-integrable 2-plane distributions on \mathbb{R}^3 .

Let \mathcal{A} be a connection on a principal G-bundle $\pi: P \to B$.

(b) Define the *horizontal distribution* H and curvature \mathcal{F} of \mathcal{A} , and show that H is integrable if and only if $\mathcal{F} = 0$.

Now let B be the cylinder $S^1 \times \mathbb{R}$ with local coordinates (θ, t) , and let P be the trivial \mathbb{R} -bundle with fibre coordinate z. Consider the distribution D on P spanned by $\partial_{\theta} + f \partial_z$ and $\partial_t + g \partial_z$, where f and g are smooth functions of θ , t, and z.

(c) State and prove necessary and sufficient conditions on f and g for D to be the horizontal distribution of a connection \mathcal{A} on P. If these conditions hold, compute \mathcal{F} .

(d) For $f = t \cos \theta + 1$ and $g = \sin \theta$, does the connection admit local horizontal sections? What about global horizontal sections?

END OF PAPER