MATHEMATICAL TRIPOS Part III

Friday, 3 June, $2022 \quad 9{:}00 \ \mathrm{am}$ to $12{:}00 \ \mathrm{pm}$

PAPER 114

ALGEBRAIC TOPOLOGY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Explain, without making use of cellular homology, the calculation of $H_i(S^n; \mathbb{Z})$ for all n > 0 and all $i \ge 0$, and hence determine the effect on homology of a reflection $r: S^n \to S^n$. [You may use any other standard properties of homology, provided they are clearly stated.]

Define the cellular chain complex of a CW-complex X, and describe it in terms of the cells of X and the attaching maps of these cells.

Describe a CW-complex structure on \mathbb{RP}^n and hence calculate the cellular homology of this space, with both \mathbb{Z} - and $\mathbb{Z}/2$ -coefficients.

2 Let (C_{\bullet}, d_C) be a chain complex. For a \mathbb{Z} -module A write $H_*(C_{\bullet}; A)$ for the homology of the chain complex $C_{\bullet} \otimes A$ and $H^*(C_{\bullet}; A)$ for the homology of the chain complex $\operatorname{Hom}_{\mathbb{Z}}(C_{\bullet}, A)$, in both cases with the differential induced by d_C .

Assume that each C_i is a finitely-generated free \mathbb{Z} -module. By explaining how to decompose (C_{\bullet}, d_C) as a sum of elementary chain complexes, describe $H^*(C_{\bullet}; \mathbb{Z})$ in terms of $H_*(C_{\bullet}; \mathbb{Z})$.

Show that if $H_*(C_{\bullet}; \mathbb{Z}/p) = 0$ for all prime numbers p, then $H_*(C_{\bullet}; \mathbb{Z}) = 0$ too.

Let $f_{\#}: (C_{\bullet}, d_C) \to (D_{\bullet}, d_D)$ be a map between chain complexes of finitelygenerated free Z-modules. Verify that

$$M_i := C_{i-1} \oplus D_i, \qquad d_M := \begin{pmatrix} -d_C & 0\\ -f_{\#} & d_D \end{pmatrix}$$

defines a chain complex, and hence show that if $f_* : H_*(C_{\bullet}; \mathbb{Z}/p) \to H_*(D_{\bullet}; \mathbb{Z}/p)$ is an isomorphism for all prime numbers p, then $f_* : H_*(C_{\bullet}; \mathbb{Z}) \to H_*(D_{\bullet}; \mathbb{Z})$ is an isomorphism too.

3 Let R be a commutative ring. What is an R-orientation of a vector bundle? Prove that a complex vector bundle has a canonical R-orientation.

Carefully state the Thom isomorphism theorem for an R-oriented vector bundle $\pi: E \to B$ over a compact space B. Define the Euler class of such a vector bundle, and derive its Gysin exact sequence. Calculate the \mathbb{Z} -cohomology ring of \mathbb{CP}^n .

Carefully state the Künneth theorem. Writing $X := \mathbb{CP}^n \times \mathbb{CP}^n$, determine the group of automorphisms of $H^2(X;\mathbb{Z})$ which may be realised by homotopy equivalences $f: X \to X$.

4 Let R be a commutative ring, and M be a compact d-dimensional manifold. What is a local R-orientation of M at a point $x \in M$? What is an R-orientation of M? What is an R-fundamental class (i.e. with R-coefficients) of M? Show that an R-fundamental class of M determines an R-orientation. [You do not need to show that an orientation determines a fundamental class.]

State the Poincaré duality theorem for M.

Assuming the calculation of the Z-homology of spheres, show that S^d for $d \ge 1$ has a Z-fundamental class.

If $X \subset S^d$ is a proper subspace such that the quotient space S^d/X is a manifold, show that

1. S^d/X has a \mathbb{Z} -orientation such that the quotient map $q: S^d \to S^d/X$ has degree 1,

2. $S^d - X$ has the Z-homology of a point.

END OF PAPER