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1 Explain, without making use of cellular homology, the calculation of Hi(S
n;Z)

for all n > 0 and all i > 0, and hence determine the effect on homology of a reflection
r : Sn → Sn. [You may use any other standard properties of homology, provided they are
clearly stated.]

Define the cellular chain complex of a CW-complex X, and describe it in terms of
the cells of X and the attaching maps of these cells.

Describe a CW-complex structure on RPn and hence calculate the cellular homology
of this space, with both Z- and Z/2-coefficients.

2 Let (C•, dC) be a chain complex. For a Z-module A write H∗(C•;A) for the
homology of the chain complex C• ⊗ A and H∗(C•;A) for the homology of the chain
complex HomZ(C•, A), in both cases with the differential induced by dC .

Assume that each Ci is a finitely-generated free Z-module. By explaining how to
decompose (C•, dC) as a sum of elementary chain complexes, describe H∗(C•;Z) in terms
of H∗(C•;Z).

Show that if H∗(C•;Z/p) = 0 for all prime numbers p, then H∗(C•;Z) = 0 too.

Let f# : (C•, dC) → (D•, dD) be a map between chain complexes of finitely-
generated free Z-modules. Verify that

Mi := Ci−1 ⊕Di, dM :=

(
−dC 0
−f# dD

)

defines a chain complex, and hence show that if f∗ : H∗(C•;Z/p) → H∗(D•;Z/p) is an
isomorphism for all prime numbers p, then f∗ : H∗(C•;Z)→ H∗(D•;Z) is an isomorphism
too.

3 Let R be a commutative ring. What is an R-orientation of a vector bundle? Prove
that a complex vector bundle has a canonical R-orientation.

Carefully state the Thom isomorphism theorem for an R-oriented vector bundle
π : E → B over a compact space B. Define the Euler class of such a vector bundle, and
derive its Gysin exact sequence. Calculate the Z-cohomology ring of CPn.

Carefully state the Künneth theorem. Writing X := CPn × CPn, determine the
group of automorphisms of H2(X;Z) which may be realised by homotopy equivalences
f : X → X.
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4 Let R be a commutative ring, and M be a compact d-dimensional manifold. What
is a local R-orientation of M at a point x ∈ M? What is an R-orientation of M? What
is an R-fundamental class (i.e. with R-coefficients) of M? Show that an R-fundamental
class of M determines an R-orientation. [You do not need to show that an orientation
determines a fundamental class.]

State the Poincaré duality theorem for M .

Assuming the calculation of the Z-homology of spheres, show that Sd for d > 1 has
a Z-fundamental class.

If X ⊂ Sd is a proper subspace such that the quotient space Sd/X is a manifold,
show that

1. Sd/X has a Z-orientation such that the quotient map q : Sd → Sd/X has degree 1,

2. Sd −X has the Z-homology of a point.

END OF PAPER
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