MATHEMATICAL TRIPOS Part III

Wednesday, 8 June, 2022 1:30 pm to 4:30 pm

PAPER 112

KNOTS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 For each item below, give an example of a knot with the stated properties. Justify your answers. You may use theorems proved in lecture, as long as you state them clearly.

- (i) A knot K_1 with $g(K_1) = 2022$.
- (ii) A knot K_2 with $g(K_2) = 1$ and $c(K_2) = 2022$.
- (iii) A knot K_3 for which $\Delta_{K_3}(t) \not\sim 1$, but det $K_3 = |\Delta_{K_3}(-1)| = 1$.
- (iv) A knot K_4 which is not isotopic to the unknot, but which has $\Delta_{K_4}(t) \sim 1$. [You should explain why $\Delta_{K_4}(t) \sim 1$, but do not need to justify that your example is not the unknot.]

2 Consider two links L and L' represented by diagrams D and D' of the form shown in the figures below. Here D_1 and $r(D_1)$, the parts of D and D' contained in the left-hand disks, are related by a 180° rotation around a vertical line as shown.

(a) Prove that L and L' can be oriented so that V(L) = V(L'). [Hint: Use the Kauffman bracket skein relation to resolve all crossings in D_1 .]

(b) Show that the links L and L' need not be isotopic to each other. [Hint: Look for an example where the individual components of L and L' are different knots.]

Figure 1: The diagrams D and D'.

Figure 2: An example of 180° rotation.

Figure 3: An example of D and D'.

[TURN OVER]

3 Let K be a knot represented by a diagram D, with complementary regions R_0 (the infinite region), R_1, \ldots, R_n . Assume that D is reduced, so that no two corners of a crossing of D belong to the same region R_i . Let R_0 be the infinite region, and let R_1 be a region of D which is adjacent to R_0 , as shown in the figures below. Let

$$P_{Dehn} = \langle a_1, \dots, a_n \, | \, w_1, \dots, w_{n-1} \rangle$$

be the Dehn presentation of $\pi_1(E_K)$ associated to D.

(a) Explain how to find the relations w_i from D. [No justification is required.]

(b) Let a_1 be the generator associated to the region R_1 . Explain how to compute the Alexander polynomial $\Delta_K(t)$ from the Fox derivatives $d_{a_i}w_j$ for i > 1. Justify your answer.

(c) A Kauffman state for D is a decoration of D in which we draw a black dot in one of the four corners adjacent to each crossing of D, subject to the constraint that R_0 and R_1 contain no dots, and that for i > 1, R_i should contain exactly one dot. See the figure for two examples of Kauffman states associated to a diagram of the figure 8 knot.

Let $\mathcal{S}(D)$ be the set of all Kauffman states of D. Show that

$$\Delta_K(t) \sim \sum_{s \in \mathcal{S}(D)} (-1)^{\epsilon(s)} t^{\delta(s)}$$

where $\epsilon(s)$ and $\delta(s)$ are integers associated to s. [You do not need to describe how to find $\epsilon(s)$ and $\delta(s)$.]

Figure 1: Two Kauffman states for a diagram of the figure-eight knot.

4 Let $K \subset S^3$ be a knot. Briefly explain why its exterior E_K is homotopy equivalent to a cell complex X with 1 0-cell, n 1-cells, and n-1 2-cells for some number $n \ge 0$. [A detailed proof is not required.]

Show that there is a unique surjective homomorphism $\alpha : \pi_1(X) \to \mathbb{Z}/2$. Let $p : \widehat{X} \to X$ be the covering map corresponding to ker α . Show that $H_*(\widehat{X})$ has the structure of a module over $\widehat{R} = \mathbb{Z}[\mathbb{Z}/2] \cong \mathbb{Z}[t]/(t^2 - 1)$. Briefly explain how to give \widehat{X} a cell structure so that $C^{cell}_*(\widehat{X})$ is a free module over \widehat{R} . How is $C^{cell}_*(\widehat{X})$ related to $C^{cell}_*(\widetilde{X})$, where \widetilde{X} is the infinite cyclic cover of X?

Suppose that p is an odd prime, and that \mathbb{F}_p is the field of order p. Show that $H_*(\widehat{X};\mathbb{F}_p) \cong H_*(E_K;\mathbb{F}_p) \oplus H_*(C_-)$, where $C_- = C^{cell}_*(\widetilde{X}) \otimes_R R_-$, $R = \mathbb{Z}[t^{\pm 1}]$, and $R_- = \mathbb{F}_p[t^{\pm 1}]/(t+1)$. By considering the Alexander polynomial or otherwise, prove that $H_*(C_-)$ is nonzero if and only if p divides det K. What is $H_*(\widehat{X};\mathbb{Q})$?

5 (a) Suppose $C: S^{k-1} \hookrightarrow N^{n-1}$ is a smoothly embedded sphere in a manifold N of dimension n-1. What is meant by a *framing* of C? Give an example of such a C which has no framings. If a framing exists, describe the set of homotopy classes of framings of C. [No justification is needed.] What is this set when k = 2 and n = 4?

(b) Let \widehat{L}_1 be the (n, n) torus link with framing 1 (relative to the Seifert framing) on each component. What is the intersection form on $W(\widehat{L}_1)$? Compute $H_*(S^3_{\widehat{L}_1})$. Identify the manifold $W(\widehat{L}_1)$ and its boundary $S^3_{\widehat{L}_1}$.

(c) Now let \widehat{L}_2 be the (n, n) torus link with framing 0 (relative to the Seifert framing) on each component. What is the intersection form on $W(\widehat{L}_2)$? Compute $H_*(S^3_{\widehat{L}_2})$ and identify the manifold $S^3_{\widehat{L}_2}$.

END OF PAPER