MATHEMATICAL TRIPOS Part III

Monday, 13 June, 2022 $-1{:}30~\mathrm{pm}$ to $3{:}30~\mathrm{pm}$

PAPER 111

COXETER GROUPS

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt **ALL** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let W be a group generated by a finite set S of involutions.

(a) Write down the condition required for the pair (W, S) to satisfy the *deletion* condition (D) and the condition required for the pair (W, S) to satisfy the *exchange* condition (E).

The pair (W, S) satisfies the folding condition (F), if the following condition holds: suppose $w \in W$ and $s, t \in S$ are such that $l_S(sw) = l_S(w) + 1$ and $l_S(wt) = l_S(w) + 1$. Then either $l_S(swt) = l_S(w) + 2$ or swt = w.

(b) Show that the conditions (D), (E), and (F) are equivalent, by proving (D) \Rightarrow (E) \Rightarrow (F) \Rightarrow (D).

2 Let (W, S) be a Coxeter system, and $R = \{wsw^{-1} | w \in W, s \in S\}.$

(a) Define the Cayley graph for W with generating set S, $\operatorname{Cay}_{S}(W)$, and the wall H_{r} associated to a reflection $r \in R$.

(b) Given a reflection $r \in R$ and element $w \in W$, show that H_r separates e from w in $\operatorname{Cay}_S(W)$ if and only if $l_S(rw) < l_S(w)$.

(c) Show that if an element $w_0 \in W$ satisfies that $l_S(rw_0) < l_S(w_0)$ for all $r \in R$, it follows that for all $u \in W$, $l_S(w_0) = l_S(u) + l_S(u^{-1}w_0)$.

3 Let (W, S) be a Coxeter system, $T \subseteq S$ and $W_T = \langle T \rangle$ the subgroup of W generated by T.

(a) Show that (W_T, T) is a Coxeter system.

(b) Show that for $w \in W_T$, any reduced word (s_1, \ldots, s_k) representing w in W satisfies $s_i \in T$ for all i.

(c) Show the following inclusions of subgroups in Coxeter groups:

$$W(A_n) \subset W(B_{n+1}), \ W(A_7) \subset W(E_8), \ W(D_7) \subset W(E_8).$$

(d) Without using the classification of finite Coxeter groups, show that the Coxeter group

$$W = \langle s, t, u \mid s^2 = t^2 = u^2 = (st)^4 = (tu)^4 = (su)^2 = e \rangle$$

is not a subgroup of the finite Coxeter group $W(B_4)$.

4 Let (W, S) be a Coxeter system. Recall that the Davis complex $\Sigma(W, S)$ can be defined in two equivalent ways, as:

- (i) A basic construction $\mathcal{U}(W, K)$.
- (ii) The geometric realisation $Flag(\mathcal{P})$ of the poset $\mathcal{P} = \{wW_T | w \in W, T \in \mathcal{S}\}.$

(a) Draw the Davis complex $\Sigma(W, S)$ twice for the Coxeter system with $S = \{s, t\}$ and $m_{st} = 2$, first using definition (i) and then using definition (ii).

(b) Let (W, S) be a Coxeter system. Show using definition (i) that for every $w \in W$ and every $T \in S$, the conjugate wW_Tw^{-1} appears as the stabiliser of some vertex of the Davis complex $\Sigma(W, S)$.

(c) Let (W, S) be a Coxeter system. Prove that the Davis complex $\Sigma(W, S)$ is contractible. You can use the following claims without proof:

- C1: If there exists $w_0 \in W$ such that $l_S(sw_0) < l_S(w_0)$ for all $s \in S$ then W is finite.
- C2: For every parabolic subgroup W_T of W, there exists a unique element $w \in W$ of minimal length in the coset wW_T , such that all elements $w' \in wW_T$ can be written as w' = wa for $a \in W_T$ with $l_S(w') = l_S(w) + l_S(a)$.
- C3: If $T \in S$, then $K^T = \bigcup_{t \in T} K_t$ is contractible. (Here K_t is the *t*-mirror in the fundamental chamber K.)
- C4: The union of two contractible spaces with contractible intersection is contractible.

END OF PAPER