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1

State and prove the Local LYM inequality. State the LYM inequality, and give two
proofs: one using Local LYM and one using maximal chains.

For a set A ∈ P([n]), we write µ(A) for (−1)|A|. A family A ⊂ P([n]) is called
convex if whenever A,B ∈ A and A ⊂ C ⊂ B then also C ∈ A. Show that if A is convex
then ∣∣∣∣∣
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Show that every maximal intersecting family in P([n]) has size exactly 2n−1. For
each n > 4, exhibit three intersecting families of size 2n−1 that are non-isomorphic.

State the Erdős-Ko-Rado theorem, and give two proofs: one using the Kruskal-
Katona theorem and one using averaging.

Let fr(n) be the minimal size of a maximal intersecting family in [n](r). For a fixed
r > 2, does fr(n) tend to infinity as n tends to infinity?

3

State and prove the vertex-isoperimetric inequality in the grid [k]n.

Determine which of the following statements are true and which are false.

(i) For k sufficiently large, if A and B are disjoint subsets of [k]2 of size greater than
(k2 − k)/2 then some point of A is adjacent to some point of B.

(ii) For k sufficiently large, if A and B are disjoint subsets of [k]3 of size greater
than (k3 − k2)/2 then some point of A is adjacent to some point of B.

(iii) For k sufficiently large (and a multiple of 3), if A is a subset of [k]2 of size 4k2/9
then there are at least 4k/3 edges from A to its complement.
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State and prove the Frankl-Wilson theorem.

In each of the following cases, determine the maximum size of the given family, up
to a multiplicative constant.

(i) A family A ⊂ [n](4) such that for any distinct A,B ∈ A we have that |A ∩B| is
2 or 3.

(ii) A family A ⊂ [n](4) such that for any distinct A,B ∈ A we have that |A∩B| is
1 or 3.

(iii) A family A ⊂ [n](4) such that for any distinct A,B ∈ A we have that |A ∩ B|
is 0 or 2.

(iv) A family A ⊂ [n](4) such that for any distinct A,B ∈ A we have that |A ∩ B|
is 1 or 2.
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