MATHEMATICAL TRIPOS Part III

Thursday, 2 June, $2022 \quad 9{:}00 \ {\rm am}$ to $11{:}00 \ {\rm am}$

PAPER 109

COMBINATORICS

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

State and prove the Local LYM inequality. State the LYM inequality, and give two proofs: one using Local LYM and one using maximal chains.

For a set $A \in \mathcal{P}([n])$, we write $\mu(A)$ for $(-1)^{|A|}$. A family $\mathcal{A} \subset \mathcal{P}([n])$ is called *convex* if whenever $A, B \in \mathcal{A}$ and $A \subset C \subset B$ then also $C \in \mathcal{A}$. Show that if \mathcal{A} is convex then

$$\left|\sum_{A\in\mathcal{A}}\mu(A)\right| \leqslant \binom{n}{\lfloor n/2 \rfloor}.$$

 $\mathbf{2}$

Show that every maximal intersecting family in $\mathcal{P}([n])$ has size exactly 2^{n-1} . For each $n \ge 4$, exhibit three intersecting families of size 2^{n-1} that are non-isomorphic.

State the Erdős-Ko-Rado theorem, and give two proofs: one using the Kruskal-Katona theorem and one using averaging.

Let $f_r(n)$ be the *minimal* size of a maximal intersecting family in $[n]^{(r)}$. For a fixed $r \ge 2$, does $f_r(n)$ tend to infinity as n tends to infinity?

3

State and prove the vertex-isoperimetric inequality in the grid $[k]^n$.

Determine which of the following statements are true and which are false.

(i) For k sufficiently large, if A and B are disjoint subsets of $[k]^2$ of size greater than $(k^2 - k)/2$ then some point of A is adjacent to some point of B.

(ii) For k sufficiently large, if A and B are disjoint subsets of $[k]^3$ of size greater than $(k^3 - k^2)/2$ then some point of A is adjacent to some point of B.

(iii) For k sufficiently large (and a multiple of 3), if A is a subset of $[k]^2$ of size $4k^2/9$ then there are at least 4k/3 edges from A to its complement.

 $\mathbf{4}$

State and prove the Frankl-Wilson theorem.

In each of the following cases, determine the maximum size of the given family, up to a multiplicative constant.

(i) A family $\mathcal{A} \subset [n]^{(4)}$ such that for any distinct $A, B \in \mathcal{A}$ we have that $|A \cap B|$ is 2 or 3.

(ii) A family $\mathcal{A} \subset [n]^{(4)}$ such that for any distinct $A, B \in \mathcal{A}$ we have that $|A \cap B|$ is 1 or 3.

(iii) A family $\mathcal{A} \subset [n]^{(4)}$ such that for any distinct $A, B \in \mathcal{A}$ we have that $|A \cap B|$ is 0 or 2.

(iv) A family $\mathcal{A} \subset [n]^{(4)}$ such that for any distinct $A, B \in \mathcal{A}$ we have that $|A \cap B|$ is 1 or 2.

END OF PAPER