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1 In this question, Ω ⊂ Rn is a bounded open set, and c : Ω→ R is a given function.

(a) Suppose c 6 0. State and prove the weak maximum principle satisfied by a function
u ∈ C2(Ω) ∩ C0(Ω) satisfying ∆u+ cu > 0 in Ω. Use the weak maximum principle
to prove the following:

(i) if c 6 0 and u ∈ C2(Ω) ∩ C0(Ω) satisfies ∆u+ cu = f in Ω for some function
f : Ω → R, then for any constant d > 0 such that Ω ⊂ {−d < x1 < d}, we
have

sup
Ω
|u| 6 sup

∂ Ω
|u|+ (e2d − 1) sup

Ω
|f |.

[Hint: consider a function v of the form v(x1, x2, . . . , xn) = A+B(e2d−ex1+d)
for appropriate constants A and B.]

(ii) if ϕ ∈ C0(Ω), g ∈ C1(Ω×R;R) and g satisfies ∂g
∂t (x, t) > 0 for all (x, t) ∈ Ω×R,

then there is at most one function u ∈ C2(Ω)∩C0(Ω) satisfying ∆u = g(x, u)
in Ω and u = ϕ on ∂ Ω.

(b) Now suppose, in place of the assumption c 6 0, that supΩ c+ < ∞, where
c+ = max{c, 0}. Use the result of (a)(i) to deduce the following more general
version of it: for each ε > 0 and τ > 0, there is δ = δ(ε, τ) > 0, with
limτ→0+ δ(ε, τ) =∞ ∀ε > 0, such that if 0 ∈ Ω ⊂ {−d < x1 < d} and supΩ c+ 6 τ ,
then for any u ∈ C2(Ω) ∩ C0(Ω) and f : Ω → R satisfying ∆u + cu = f in Ω, we
have

sup
Ω∩{−d1<x1<d1}

|u| 6 (1 + ε)

(
sup

∂ (Ω∩{−d1<x1<d1})
|u|+ (e2d1 − 1) sup

Ω∩{−d1<x1<d1}
|f |
)

where d1 = min{d, δ(ε, τ)}.
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2

In this question we use the notation Bρ = {x ∈ Rn : ‖x‖ < ρ} and B = B1, where ‖ · ‖
denotes the Euclidean norm.

Let α ∈ (0, 1) and β > 0. Let b1, b2, . . . , bn, c ∈ C0,α(B) satisfy
∑n

i=1 |bi|0,α;B +
|c|0,α;B 6 β. Let L be the differential operator defined by Lu = ∆u + biDiu + cu, where
∆ is the Laplacian.

(a) Show that for each δ ∈ (0, 1), there is a constant C = C(n, α, β, δ) ∈ (0,∞) such
that if u ∈ C2,α(B) satisfies Lu = 0 in B, then

[D2u]α;B1/2
6 δ[D2u]α;B + C|u|2;B.

Explain briefly how to deduce from this estimate that there is a constant C =
C(n, α, β) such that, if u ∈ C2,α(B) satisfies Lu = 0 in B, then

|u|2,α;B1/2
6 C|u|0;B.

[You are not required to give proofs of any additional results needed.]

(b) Let (uk)
∞
k=1 be a sequence of functions in C2(B) satisfying Luk = 0 in B for every

k. Suppose that there is a function v : B → R such that uk → v locally uniformly
on B. Show that v ∈ C2(B) and that v satisfies Lv = 0 in B.

(c) Let uk be as in (b), but instead of the hypothesis that uk → v locally uniformly,
assume that v ∈ L1(B) and that uk → v in L1(B). Does the conclusion of (b) still
hold? Give a proof if yes, or a counterexample if no.

(d) Let (uk)
∞
k=1 be a sequence of functions in C2(B) ∩ C0(B) satisfying Luk = 0 in B

for every k. If there is a function v ∈ C2(B) such that uk → v uniformly on ∂B,
does it follow that a subsequence of (uk) converges uniformly on B? Give a proof if
yes, or a counterexample if no.

[In any part of the question, you may use without proof the following:

(i) Liouville’s theorem for harmonic functions: there does not exist a non-constant
harmonic function w on Rn such that [w]α;Rn <∞ for some α ∈ (0, 1).

(ii) any existence theorem established in the course for solutions to the Dirichlet problem
for elliptic operators.]
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3 Let B = {x ∈ Rn : ‖x‖ < 1} be the open unit ball in Rn, and let α ∈ (0, 1),
β > 0, λ > 0 be fixed constants. For 1 6 i, j 6 n, let aij , bi be functions in C0,α(B)
satisfying |aij |0,α;B, |bi|0,α;B 6 β and aij(x)ζiζj > λ|ζ|2 for all x ∈ B, ζ ∈ Rn. Let
L : C2,α(B)→ C0,α(B) be the linear differential operator given by Lu = aijDiju+ biDiu.

Let C2,α
0 (B) = {u ∈ C2,α(B) : u = 0 on ∂B}.

(a) Suppose that functions u ∈ C2,α
0 (B) and f ∈ C0,α(B) satisfy Lu = f in B. Give

the statements of: (i) an upper bound for |u|0;B in terms of an appropritate norm
of f , and (ii) the global Schauder estimate satisfied by u.

(b) Given that the Laplacian ∆ : C2,α
0 (B) → C0,α(B) is a bijection, show that

L : C2,α
0 (B)→ C0,α(B) is a bijection.

(c) Let g : R → R be a C2 function with g(0) = 0, g′(0) = 0 and sup[−1,1] |g′′(t)| 6 1.

Let N : C2,α(B)→ C0,α(B) be defined by

Nu = Lu+ g(u).

(i) For u, u1, u2 ∈ C0,α(B) with |u|0;B, |u1|0;B, |u2|0;B 6 1, show that

|g(u)|0,α;B 6 |u|20,α;B

and that

|g(u1)− g(u2)|0,α;B 6 (|u1|0,α;B + |u2|0,α;B)|u1 − u2|0,α;B.

(ii) Prove that there are constants ε0 = ε0(n, α, β, λ) ∈ (0, 1) and δ0 =
δ0(n, α, β, λ) > 0 such that for each c, f ∈ C0,α(B) with |c|0,α;B, |f |0,α;B 6 δ0,
there exists a unique function u ∈ C2,α(B) with |u|2,α;B 6 ε0 such that

Nu+ cu = f in B and u = 0 on ∂B.
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4 In this question we use the notation Bρ = {x ∈ Rn : ‖x‖ < ρ} and B = B1, where
‖ · ‖ is the Euclidean norm.

For 1 6 i, j 6 n, let aij ∈ L∞(B) be such that ‖aij‖L∞(B) 6 Λ and aij(x)ζiζj > λ|ζ|2
for some constants Λ > λ > 0, all ζ ∈ Rn and a.e. x ∈ B. Let Lu = Di

(
aijDju

)
.

(a) Let u ∈ W 1,2(B) be a non-negative weak supersolution of Lu = 0 in B. State
without proof the weak Harnack inequality which gives a lower bound for infB1/2

u.

(b) Let u ∈ W 1,2(B) be a weak solution of Lu = 0 in B. Show that u ∈ C0,µ (B1/8),
and that

|u|0,µ;B1/8
6 C‖u‖L2(B)

for some constants µ ∈ (0, 1) and C ∈ (0,∞) depending only on n, λ and Λ. [You
may use without proof any other standard results established in the course provided
they are stated clearly.]

(c) If u ∈W 1,2(B) is a non-negative weak supersolution of Lu = 0 in B, prove that for
each ρ ∈ (0, 1), ∫

Bρ

|Du|2
u2

6 C(1− ρ)−2

where C = C(n, λ,Λ) ∈ (0,∞).

(d) For each k = 1, 2, 3, . . . , let uk ∈ W 1,2(B) be a non-negative weak supersolution
of Lu = 0 in B such that 0 < supB uk < ∞. Prove that there is a subsequence
(uk′) and a non-negative function v such that v ∈W 1,2(Bρ) for each ρ ∈ (0, 1), v is
a weak supersolution of Lu = 0 in B and

uk′
(supB uk′ )

→ v in L2(Bρ) and weakly in

W 1,2(Bρ) for each ρ ∈ (0, 1).

[Hint: recall the Rellich compactness theorem, which implies that a bounded sequence
in W 1,2(Bρ) has a subsequence that converges in L2(Bρ) and weakly in W 1,2(Bρ).]
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5 Throughout this question B = {x ∈ Rn : ‖x‖ < 1} is the open unit ball in Rn, and
ϕ ∈ C1(B) is a given function.

(a) For 1 6 i, j 6 n, let αij ∈ L∞(B) be such that αij = αji for all i, j. Suppose that there
is a constant γ > 0 such that γ|ζ|2 6 αij(x)ζiζj for a.e. x ∈ B and all ζ ∈ Rn. Show that
there is a unique function u ∈ W 1,2(B) with u− ϕ ∈ W 1,2

0 (B) such that Di(α
ijDju) = 0

weakly in B.

Show further that if Γ > 0 is a constant such that ‖αij‖L∞(B) 6 Γ for all i, j, then

u ∈ C0,β(B) for some β = β(n, γ,Γ) ∈ (0, 1), and

∫

B
|Du|2ψ2 6 4

(
Γ

γ

)2 ∫

B
u2|Dψ|2

for each ψ ∈ C1
c (B).

(b) For 1 6 i, j 6 n, let aij ∈ C0(B × R) be such that aij = aji for all i, j,
and suppose that there exist positive continuous functions λ,Λ : R → R such that
λ(t)|ζ|2 6 aij(x, t)ζiζj 6 Λ(t)|ζ|2 for all (x, t) ∈ B × R.

(i) Show that for any v ∈ C0(B), there exists µ = µ(v) ∈ (0, 1) such that the linear
Dirichlet problem

Di(a
ij(x, v)Dju) = 0 in B, u = ϕ on ∂B

has a unique weak solution u ∈W 1,2(B) ∩ C0,µ(B).

(ii) State without proof the Leray–Schauder fixed point theorem for a continuous
compact map T from a Banach space to itself.

(iii) Show that the quasilinear Dirichlet problem

Di(a
ij(x, u)Dju) = 0 in B, u = ϕ on ∂B

has a weak solution u ∈W 1,2(B) ∩ C0(B).

[In any part of the question, you may use without proof the following two results:

(i) the weak maximum principle for weak solutions: if αij are as in (a) and u ∈W 1,2(B)
solves Di(α

ijDju) = 0 weakly in B with u − ϕ ∈ W 1,2
0 (B), then supB |u| =

sup∂B |ϕ|;

(ii) global De Giorgi–Nash–Moser regularity theorem: corresponding to any given
constants γ,Γ > 0, there exist constants β = β(n, γ,Γ) ∈ (0, 1) and C = C(n, γ,Γ) ∈
(0,∞) such that if the functions αij ∈ L∞(B) satisfy ‖αij‖L∞(B) 6 Γ for each i, j,
and αij(x)ζiζj > γ|ζ|2 for a.e. x ∈ B, and if u ∈ W 1,2(B) is a weak solution
to Di

(
αijDju

)
= 0 in B with u − ϕ ∈ W 1,2

0 (B), then u ∈ C0,β(B) and satisfies
[u]β;B 6 C(|u|0;B + |Dϕ|0;B).]
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