MATHEMATICAL TRIPOS Part III

Monday, 13 June, 2022 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 107

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

- 1 In this question, $\Omega \subset \mathbb{R}^n$ is a bounded open set, and $c : \Omega \to \mathbb{R}$ is a given function.
 - (a) Suppose $c \leq 0$. State and prove the weak maximum principle satisfied by a function $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfying $\Delta u + cu \geq 0$ in Ω . Use the weak maximum principle to prove the following:
 - (i) if $c \leq 0$ and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfies $\Delta u + cu = f$ in Ω for some function $f : \Omega \to \mathbb{R}$, then for any constant d > 0 such that $\Omega \subset \{-d < x_1 < d\}$, we have

$$\sup_{\Omega} |u| \leq \sup_{\partial \Omega} |u| + (e^{2d} - 1) \sup_{\Omega} |f|.$$

[*Hint: consider a function v of the form* $v(x_1, x_2, ..., x_n) = A + B(e^{2d} - e^{x_1 + d})$ for appropriate constants A and B.]

- (ii) if $\varphi \in C^0(\overline{\Omega})$, $g \in C^1(\Omega \times \mathbb{R}; \mathbb{R})$ and g satisfies $\frac{\partial g}{\partial t}(x, t) \ge 0$ for all $(x, t) \in \Omega \times \mathbb{R}$, then there is at most one function $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfying $\Delta u = g(x, u)$ in Ω and $u = \varphi$ on $\partial \Omega$.
- (b) Now suppose, in place of the assumption $c \leq 0$, that $\sup_{\Omega} c^{+} < \infty$, where $c^{+} = \max\{c, 0\}$. Use the result of (a)(i) to deduce the following more general version of it: for each $\epsilon > 0$ and $\tau > 0$, there is $\delta = \delta(\epsilon, \tau) > 0$, with $\lim_{\tau \to 0^{+}} \delta(\epsilon, \tau) = \infty \quad \forall \epsilon > 0$, such that if $0 \in \Omega \subset \{-d < x_{1} < d\}$ and $\sup_{\Omega} c^{+} \leq \tau$, then for any $u \in C^{2}(\Omega) \cap C^{0}(\overline{\Omega})$ and $f : \Omega \to \mathbb{R}$ satisfying $\Delta u + cu = f$ in Ω , we have

$$\sup_{\Omega \cap \{-d_1 < x_1 < d_1\}} |u| \le (1+\epsilon) \left(\sup_{\partial (\Omega \cap \{-d_1 < x_1 < d_1\})} |u| + (e^{2d_1} - 1) \sup_{\Omega \cap \{-d_1 < x_1 < d_1\}} |f| \right)$$

where $d_1 = \min\{d, \delta(\epsilon, \tau)\}.$

 $\mathbf{2}$

In this question we use the notation $B_{\rho} = \{x \in \mathbb{R}^n : ||x|| < \rho\}$ and $B = B_1$, where $|| \cdot ||$ denotes the Euclidean norm.

Let $\alpha \in (0,1)$ and $\beta > 0$. Let $b^1, b^2, \ldots, b^n, c \in C^{0,\alpha}(\overline{B})$ satisfy $\sum_{i=1}^n |b^i|_{0,\alpha;B} + |c|_{0,\alpha;B} \leq \beta$. Let *L* be the differential operator defined by $Lu = \Delta u + b^i D_i u + cu$, where Δ is the Laplacian.

(a) Show that for each $\delta \in (0,1)$, there is a constant $C = C(n, \alpha, \beta, \delta) \in (0, \infty)$ such that if $u \in C^{2,\alpha}(B)$ satisfies Lu = 0 in B, then

$$[D^2 u]_{\alpha; B_{1/2}} \leqslant \delta[D^2 u]_{\alpha; B} + C|u|_{2; B}.$$

Explain *briefly* how to deduce from this estimate that there is a constant $C = C(n, \alpha, \beta)$ such that, if $u \in C^{2,\alpha}(B)$ satisfies Lu = 0 in B, then

$$|u|_{2,\alpha;B_{1/2}} \leq C|u|_{0;B}$$

[You are not required to give proofs of any additional results needed.]

- (b) Let $(u_k)_{k=1}^{\infty}$ be a sequence of functions in $C^2(B)$ satisfying $Lu_k = 0$ in B for every k. Suppose that there is a function $v : B \to \mathbb{R}$ such that $u_k \to v$ locally uniformly on B. Show that $v \in C^2(B)$ and that v satisfies Lv = 0 in B.
- (c) Let u_k be as in (b), but instead of the hypothesis that $u_k \to v$ locally uniformly, assume that $v \in L^1(B)$ and that $u_k \to v$ in $L^1(B)$. Does the conclusion of (b) still hold? Give a proof if yes, or a counterexample if no.
- (d) Let $(u_k)_{k=1}^{\infty}$ be a sequence of functions in $C^2(B) \cap C^0(\overline{B})$ satisfying $Lu_k = 0$ in B for every k. If there is a function $v \in C^2(\overline{B})$ such that $u_k \to v$ uniformly on ∂B , does it follow that a subsequence of (u_k) converges uniformly on B? Give a proof if yes, or a counterexample if no.

In any part of the question, you may use without proof the following:

- (i) Liouville's theorem for harmonic functions: there does not exist a non-constant harmonic function w on \mathbb{R}^n such that $[w]_{\alpha:\mathbb{R}^n} < \infty$ for some $\alpha \in (0,1)$.
- (ii) any existence theorem established in the course for solutions to the Dirichlet problem for elliptic operators.]

3 Let $B = \{x \in \mathbb{R}^n : ||x|| < 1\}$ be the open unit ball in \mathbb{R}^n , and let $\alpha \in (0,1)$, $\beta > 0, \lambda > 0$ be fixed constants. For $1 \leq i, j \leq n$, let a^{ij}, b^i be functions in $C^{0,\alpha}(\overline{B})$ satisfying $|a^{ij}|_{0,\alpha;B}, |b^i|_{0,\alpha;B} \leq \beta$ and $a^{ij}(x)\zeta^i\zeta^j \geq \lambda|\zeta|^2$ for all $x \in B, \zeta \in \mathbb{R}^n$. Let $L : C^{2,\alpha}(\overline{B}) \to C^{0,\alpha}(\overline{B})$ be the linear differential operator given by $Lu = a^{ij}D_{ij}u + b^iD_iu$. Let $C_0^{2,\alpha}(\overline{B}) = \{u \in C^{2,\alpha}(\overline{B}) : u = 0 \text{ on } \partial B\}.$

- (a) Suppose that functions $u \in C_0^{2,\alpha}(\overline{B})$ and $f \in C^{0,\alpha}(\overline{B})$ satisfy Lu = f in B. Give the statements of: (i) an upper bound for $|u|_{0;B}$ in terms of an appropriate norm of f, and (ii) the global Schauder estimate satisfied by u.
- (b) Given that the Laplacian $\Delta : C_0^{2,\alpha}(\overline{B}) \to C^{0,\alpha}(\overline{B})$ is a bijection, show that $L : C_0^{2,\alpha}(\overline{B}) \to C^{0,\alpha}(\overline{B})$ is a bijection.
- (c) Let $g : \mathbb{R} \to \mathbb{R}$ be a C^2 function with g(0) = 0, g'(0) = 0 and $\sup_{[-1,1]} |g''(t)| \leq 1$. Let $\mathcal{N} : C^{2,\alpha}(\overline{B}) \to C^{0,\alpha}(\overline{B})$ be defined by

$$\mathcal{N}u = Lu + g(u).$$

(i) For $u, u_1, u_2 \in C^{0,\alpha}(\overline{B})$ with $|u|_{0,B}, |u_1|_{0,B}, |u_2|_{0,B} \leq 1$, show that

$$|g(u)|_{0,\alpha;B} \leqslant |u|_{0,\alpha;B}^2$$

and that

$$|g(u_1) - g(u_2)|_{0,\alpha;B} \leq (|u_1|_{0,\alpha;B} + |u_2|_{0,\alpha;B})|u_1 - u_2|_{0,\alpha;B}$$

(ii) Prove that there are constants $\epsilon_0 = \epsilon_0(n, \alpha, \beta, \lambda) \in (0, 1)$ and $\delta_0 = \delta_0(n, \alpha, \beta, \lambda) > 0$ such that for each $c, f \in C^{0,\alpha}(\overline{B})$ with $|c|_{0,\alpha;B}, |f|_{0,\alpha;B} \leq \delta_0$, there exists a unique function $u \in C^{2,\alpha}(\overline{B})$ with $|u|_{2,\alpha;B} \leq \epsilon_0$ such that

$$\mathcal{N}u + cu = f$$
 in B and $u = 0$ on ∂B .

4 In this question we use the notation $B_{\rho} = \{x \in \mathbb{R}^n : ||x|| < \rho\}$ and $B = B_1$, where $\|\cdot\|$ is the Euclidean norm.

For $1 \leq i, j \leq n$, let $a^{ij} \in L^{\infty}(B)$ be such that $||a^{ij}||_{L^{\infty}(B)} \leq \Lambda$ and $a^{ij}(x)\zeta^{i}\zeta^{j} \geq \lambda |\zeta|^{2}$ for some constants $\Lambda \geq \lambda > 0$, all $\zeta \in \mathbb{R}^{n}$ and a.e. $x \in B$. Let $Lu = D_{i}(a^{ij}D_{j}u)$.

- (a) Let $u \in W^{1,2}(B)$ be a non-negative weak supersolution of Lu = 0 in B. State without proof the weak Harnack inequality which gives a lower bound for $\inf_{B_{1/2}} u$.
- (b) Let $u \in W^{1,2}(B)$ be a weak solution of Lu = 0 in B. Show that $u \in C^{0,\mu}(B_{1/8})$, and that

$$|u|_{0,\mu;B_{1/8}} \leq C ||u||_{L^2(B)}$$

for some constants $\mu \in (0, 1)$ and $C \in (0, \infty)$ depending only on n, λ and Λ . [You may use without proof any other standard results established in the course provided they are stated clearly.]

(c) If $u \in W^{1,2}(B)$ is a non-negative weak supersolution of Lu = 0 in B, prove that for each $\rho \in (0, 1)$,

$$\int_{B_{\rho}} \frac{|Du|^2}{u^2} \leqslant C(1-\rho)^{-2}$$

where $C = C(n, \lambda, \Lambda) \in (0, \infty)$.

(d) For each k = 1, 2, 3, ..., let $u_k \in W^{1,2}(B)$ be a non-negative weak supersolution of Lu = 0 in B such that $0 < \sup_B u_k < \infty$. Prove that there is a subsequence $(u_{k'})$ and a non-negative function v such that $v \in W^{1,2}(B_{\rho})$ for each $\rho \in (0,1), v$ is a weak supersolution of Lu = 0 in B and $\frac{u_{k'}}{(\sup_B u_{k'})} \to v$ in $L^2(B_{\rho})$ and weakly in $W^{1,2}(B_{\rho})$ for each $\rho \in (0,1)$.

[*Hint: recall the Rellich compactness theorem, which implies that a bounded sequence* in $W^{1,2}(B_{\rho})$ has a subsequence that converges in $L^{2}(B_{\rho})$ and weakly in $W^{1,2}(B_{\rho})$.] **5** Throughout this question $B = \{x \in \mathbb{R}^n : ||x|| < 1\}$ is the open unit ball in \mathbb{R}^n , and $\varphi \in C^1(\overline{B})$ is a given function.

(a) For $1 \leq i, j \leq n$, let $\alpha^{ij} \in L^{\infty}(B)$ be such that $\alpha^{ij} = \alpha^{ji}$ for all i, j. Suppose that there is a constant $\gamma > 0$ such that $\gamma |\zeta|^2 \leq \alpha^{ij}(x)\zeta^i\zeta^j$ for a.e. $x \in B$ and all $\zeta \in \mathbb{R}^n$. Show that there is a unique function $u \in W^{1,2}(B)$ with $u - \varphi \in W_0^{1,2}(B)$ such that $D_i(\alpha^{ij}D_ju) = 0$ weakly in B.

Show further that if $\Gamma > 0$ is a constant such that $\|\alpha^{ij}\|_{L^{\infty}(B)} \leq \Gamma$ for all i, j, then $u \in C^{0,\beta}(\overline{B})$ for some $\beta = \beta(n, \gamma, \Gamma) \in (0, 1)$, and

$$\int_{B} |Du|^{2} \psi^{2} \leqslant 4 \left(\frac{\Gamma}{\gamma}\right)^{2} \int_{B} u^{2} |D\psi|^{2}$$

for each $\psi \in C_c^1(B)$.

(b) For $1 \leq i, j \leq n$, let $a^{ij} \in C^0(\overline{B} \times \mathbb{R})$ be such that $a^{ij} = a^{ji}$ for all i, j, and suppose that there exist positive continuous functions $\lambda, \Lambda : \mathbb{R} \to \mathbb{R}$ such that $\lambda(t)|\zeta|^2 \leq a^{ij}(x,t)\zeta^i\zeta^j \leq \Lambda(t)|\zeta|^2$ for all $(x,t) \in \overline{B} \times \mathbb{R}$.

(i) Show that for any $v \in C^0(\overline{B})$, there exists $\mu = \mu(v) \in (0, 1)$ such that the linear Dirichlet problem

$$D_i(a^{ij}(x,v)D_ju) = 0$$
 in $B, \ u = \varphi$ on ∂B

has a unique weak solution $u \in W^{1,2}(B) \cap C^{0,\mu}(\overline{B})$.

- (ii) State without proof the Leray-Schauder fixed point theorem for a continuous compact map T from a Banach space to itself.
- (iii) Show that the quasilinear Dirichlet problem

$$D_i(a^{ij}(x,u)D_ju) = 0$$
 in $B, \ u = \varphi$ on ∂B

has a weak solution $u \in W^{1,2}(B) \cap C^0(\overline{B})$.

In any part of the question, you may use without proof the following two results:

- (i) the weak maximum principle for weak solutions: $if \alpha^{ij}$ are as in (a) and $u \in W^{1,2}(B)$ solves $D_i(\alpha^{ij}D_ju) = 0$ weakly in B with $u - \varphi \in W^{1,2}_0(B)$, then $\sup_B |u| = \sup_{\partial B} |\varphi|$;
- (ii) global De Giorgi–Nash–Moser regularity theorem: corresponding to any given constants $\gamma, \Gamma > 0$, there exist constants $\beta = \beta(n, \gamma, \Gamma) \in (0, 1)$ and $C = C(n, \gamma, \Gamma) \in (0, \infty)$ such that if the functions $\alpha^{ij} \in L^{\infty}(B)$ satisfy $\|\alpha^{ij}\|_{L^{\infty}(B)} \leq \Gamma$ for each i, j,and $\alpha^{ij}(x)\zeta^{i}\zeta^{j} \geq \gamma|\zeta|^{2}$ for a.e. $x \in B$, and if $u \in W^{1,2}(B)$ is a weak solution to $D_{i}(\alpha^{ij}D_{j}u) = 0$ in B with $u - \varphi \in W_{0}^{1,2}(B)$, then $u \in C^{0,\beta}(\overline{B})$ and satisfies $[u]_{\beta:\overline{B}} \leq C(|u|_{0:\overline{B}} + |D\varphi|_{0:\overline{B}}).]$

Part III, Paper 107

Part III, Paper 107