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Let A be a unital Banach algebra and let x ∈ A. Define the spectrum of x in A and
show that it is a non-empty, compact subset of C. Given a closed unital subalgebra B of
A with x ∈ B, state and prove the most general form of the spectrum of x in B in terms
of the spectrum of x in A. [No result about Banach algebras can be used without proof.]

Let X be the Banach space `1(Z) = {(xn)n∈Z :
∑|xn| <∞} equipped with the `1-

norm ‖x‖ =
∑|xn|. Let T : X → X be the bilateral shift operator given by T

(
(xn)

)
= (yn)

where yn = xn−1 for all n ∈ Z. Show that the spectrum of T in B(X) is contained in
T = {λ ∈ C : |λ| = 1}. Let A be the smallest closed unital subalgebra of B(X) that
contains T . Find the spectrum of T in A and in B(X). Justify your answers.

2

(a) State Goldstine’s theorem. State and prove the Banach–Alaoglu theorem.

Let X be a Banach space and K be the closed unit ball BX∗ of X∗ with the w∗-
topology. Which of the following statements are true? Give a proof or a counterexample
as appropriate.

1. X is separable =⇒ K is w∗-sequentially compact

2. X is separable =⇒ X∗ is w∗-separable

3. X∗ is w∗-separable =⇒ X is separable

[
Results from general topology can be assumed without proof.

]

(b) A Banach space X is said to be uniformly convex if for all ε > 0 there exists
δ > 0 such that if x, y ∈ BX satisfy ‖x − y‖ > ε, then

∥∥x+y
2

∥∥ 6 1 − δ. Show that if
2 6 p <∞, then Lp = Lp[0, 1] is uniformly convex.

[
Hint: You may assume that

∣∣∣s+ t

2

∣∣∣
p

+
∣∣∣s− t

2

∣∣∣
p
6 |s|

p + |t|p
2

holds for all real numbers s, t.
]

Show that a uniformly convex Banach space X is reflexive.
[
Hint: Fix ϕ ∈ SX∗∗

and ε > 0. Consider a w∗-neighbourhood of ϕ of the form {ψ ∈ BX∗∗ : ψ(f) > 1− δ} for
suitable f ∈ BX∗ and δ > 0. It may also help to recall that BX∗∗ is w∗-closed.

]

Deduce that if 1 < p <∞, then Lp is reflexive.
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(a) Let X be a real Banach space. Define the weak topology on X.

Let f : X → R be a linear map. Show that f is w-continuous if and only if f ∈ X∗.

Prove Mazur’s theorem: a norm-closed convex subset K of X is weakly closed.

Show that X is reflexive if and only if BX is weakly compact. Deduce that if X is
reflexive, then X∗ is reflexive as are Y and X/Y for any closed subspace Y of X.

(b) Let X be a real infinite-dimensional Banach space, and let (xn) be a sequence
in X that converges weakly to zero. Show that (xn) is bounded.

Let K be the closed convex hull of {xn : n ∈ N}. Prove that K is weakly compact.[
Hint: You may assume that a weakly sequentially compact set is weakly compact. Then

apply a diagonal argument to sequences of convex combinations of the (xi).
]

By considering a suitable operator X∗ → c0, show that K has empty interior in the
norm topology.

[
Hint: Argue by contradiction. You may assume without proof that every

closed, infinite-dimensional subspace of c0 contains a subspace isomorphic to c0.
]

4

(a) Let T be a bounded linear map on a (non-zero) Banach space X. Assume that
that the spectrum of T is contained in the open unit disc D = {z ∈ C : |z| < 1}. Let
f : D → C be a holomorphic function with Taylor series f(z) =

∑∞
n=0 anz

n. Show that
the series

∑∞
n=0 anT

n converges in the operator norm. [You may use any result from the
course provided that you state it clearly.]

(b) Let T be a normal operator on the Hilbert space `2. If the spectrum σ(T ) = {1},
does it follow that T equals the identity operator I? Does the answer change if T is not
assumed normal? Justify your answers. [You may assume results about Banach algebras,
but no result specific to the spectral theory of C∗-algebras can be used without proof.]

(c) State and prove the Gelfand-Naimark theorem. Define what it means for an
element x of a C∗-algebra A to be positive. Show that if x is a positive element of a
C∗-algebra A, then there is a positive element y of A such that y2 = x. [You may assume
results about Banach algebras, but no result specific to the spectral theory of C∗-algebras
can be used without proof.]
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(a) Show that if C is an open, convex subset of a locally convex space X with 0 ∈ C
and x0 ∈ X \ C, then there exists f ∈ X∗ such that f(x0) > f(x) for all x ∈ C. Deduce,
or otherwise show, that if x0 is a non-zero element of a Banach space X, then there exists
f ∈ SX∗ with f(x0) = ‖x0‖. Deduce that if Y is a closed subspace of a Banach space X
and x0 ∈ X \ Y , then there exists f ∈ SX∗ such that Y ⊂ kerf and f(x0) = d(x0, Y ).

Let X be a Banach space, F be a finite-dimensional subspace of X∗ and ϕ ∈ BX∗∗ .
Show that for all ε > 0 there exists x ∈ X such that ‖x‖ < 1 + ε and f(x) = ϕ(f) for all
f ∈ F . Deduce Goldstine’s theorem.

[
The Hahn–Banach extension theorem for real vector spaces and positive homogen-

eous, subadditive functionals can be used without proof.
]

(b) Let X be a Banach space. A subspace Z of X∗ is said to be norming for X if
there exists a constant c > 0 such that

c‖x‖ 6 sup
g∈BZ

|g(x)|

for all x ∈ X. If this holds, we say Z is c-norming for X.

Assume X is not reflexive and ϕ ∈ BX∗∗ \X. Show that kerϕ is c-norming for X
where c = d

d+1 and d = d(ϕ,X).
[
Hint: first show that d(x, span{ϕ}) > c whenever x ∈ X

and ‖x‖ = 1.
]
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