MATHEMATICAL TRIPOS Part III

Monday, 6 June, 2022 $-9{:}00~\mathrm{am}$ to 12:00 pm

PAPER 106

FUNCTIONAL ANALYSIS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Let A be a unital Banach algebra and let $x \in A$. Define the spectrum of x in A and show that it is a non-empty, compact subset of \mathbb{C} . Given a closed unital subalgebra B of A with $x \in B$, state and prove the most general form of the spectrum of x in B in terms of the spectrum of x in A. [No result about Banach algebras can be used without proof.]

Let X be the Banach space $\ell_1(\mathbb{Z}) = \{(x_n)_{n \in \mathbb{Z}} : \sum |x_n| < \infty\}$ equipped with the ℓ_1 norm $||x|| = \sum |x_n|$. Let $T: X \to X$ be the bilateral shift operator given by $T((x_n)) = (y_n)$ where $y_n = x_{n-1}$ for all $n \in \mathbb{Z}$. Show that the spectrum of T in $\mathcal{B}(X)$ is contained in $\mathbb{T} = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$. Let A be the smallest closed unital subalgebra of $\mathcal{B}(X)$ that contains T. Find the spectrum of T in A and in $\mathcal{B}(X)$. Justify your answers.

$\mathbf{2}$

(a) State Goldstine's theorem. State and prove the Banach–Alaoglu theorem.

Let X be a Banach space and K be the closed unit ball B_{X^*} of X^* with the w^* -topology. Which of the following statements are true? Give a proof or a counterexample as appropriate.

- 1. X is separable \implies K is w^* -sequentially compact
- 2. X is separable $\implies X^*$ is w^* -separable
- 3. X^* is w^* -separable $\implies X$ is separable

[Results from general topology can be assumed without proof.]

(b) A Banach space X is said to be uniformly convex if for all $\varepsilon > 0$ there exists $\delta > 0$ such that if $x, y \in B_X$ satisfy $||x - y|| \ge \varepsilon$, then $\left|\left|\frac{x+y}{2}\right|\right| \le 1 - \delta$. Show that if $2 \le p < \infty$, then $L_p = L_p[0, 1]$ is uniformly convex. [Hint: You may assume that

$$\left|\frac{s+t}{2}\right|^p + \left|\frac{s-t}{2}\right|^p \leqslant \frac{|s|^p + |t|^p}{2}$$

holds for all real numbers s, t.

Show that a uniformly convex Banach space X is reflexive. [Hint: Fix $\varphi \in S_{X^{**}}$ and $\varepsilon > 0$. Consider a w^{*}-neighbourhood of φ of the form { $\psi \in B_{X^{**}} : \psi(f) > 1 - \delta$ } for suitable $f \in B_{X^*}$ and $\delta > 0$. It may also help to recall that $B_{X^{**}}$ is w^{*}-closed.]

Deduce that if $1 , then <math>L_p$ is reflexive.

3

3

(a) Let X be a real Banach space. Define the *weak topology* on X.

Let $f: X \to \mathbb{R}$ be a linear map. Show that f is w-continuous if and only if $f \in X^*$.

Prove Mazur's theorem: a norm-closed convex subset K of X is weakly closed.

Show that X is reflexive if and only if B_X is weakly compact. Deduce that if X is reflexive, then X^* is reflexive as are Y and X/Y for any closed subspace Y of X.

(b) Let X be a real infinite-dimensional Banach space, and let (x_n) be a sequence in X that converges weakly to zero. Show that (x_n) is bounded.

Let K be the closed convex hull of $\{x_n : n \in \mathbb{N}\}$. Prove that K is weakly compact. [*Hint: You may assume that a weakly sequentially compact set is weakly compact. Then apply a diagonal argument to sequences of convex combinations of the* (x_i) .]

By considering a suitable operator $X^* \to c_0$, show that K has empty interior in the norm topology. [*Hint: Argue by contradiction. You may assume without proof that every closed, infinite-dimensional subspace of* c_0 *contains a subspace isomorphic to* c_0 .]

$\mathbf{4}$

(a) Let T be a bounded linear map on a (non-zero) Banach space X. Assume that that the spectrum of T is contained in the open unit disc $D = \{z \in \mathbb{C} : |z| < 1\}$. Let $f: D \to \mathbb{C}$ be a holomorphic function with Taylor series $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Show that the series $\sum_{n=0}^{\infty} a_n T^n$ converges in the operator norm. [You may use any result from the course provided that you state it clearly.]

(b) Let T be a normal operator on the Hilbert space ℓ_2 . If the spectrum $\sigma(T) = \{1\}$, does it follow that T equals the identity operator I? Does the answer change if T is not assumed normal? Justify your answers. [You may assume results about Banach algebras, but no result specific to the spectral theory of C^* -algebras can be used without proof.]

(c) State and prove the Gelfand-Naimark theorem. Define what it means for an element x of a C^* -algebra A to be *positive*. Show that if x is a positive element of a C^* -algebra A, then there is a positive element y of A such that $y^2 = x$. [You may assume results about Banach algebras, but no result specific to the spectral theory of C^* -algebras can be used without proof.]

 $\mathbf{5}$

(a) Show that if C is an open, convex subset of a locally convex space X with $0 \in C$ and $x_0 \in X \setminus C$, then there exists $f \in X^*$ such that $f(x_0) > f(x)$ for all $x \in C$. Deduce, or otherwise show, that if x_0 is a non-zero element of a Banach space X, then there exists $f \in S_{X^*}$ with $f(x_0) = ||x_0||$. Deduce that if Y is a closed subspace of a Banach space X and $x_0 \in X \setminus Y$, then there exists $f \in S_{X^*}$ such that $Y \subset \ker f$ and $f(x_0) = d(x_0, Y)$.

Let X be a Banach space, F be a finite-dimensional subspace of X^* and $\varphi \in B_{X^{**}}$. Show that for all $\varepsilon > 0$ there exists $x \in X$ such that $||x|| < 1 + \varepsilon$ and $f(x) = \varphi(f)$ for all $f \in F$. Deduce Goldstine's theorem.

[The Hahn-Banach extension theorem for real vector spaces and positive homogeneous, subadditive functionals can be used without proof.]

(b) Let X be a Banach space. A subspace Z of X^* is said to be norming for X if there exists a constant c > 0 such that

$$c\|x\| \leqslant \sup_{g \in B_Z} |g(x)|$$

for all $x \in X$. If this holds, we say Z is *c*-norming for X.

Assume X is not reflexive and $\varphi \in B_{X^{**}} \setminus X$. Show that ker φ is c-norming for X where $c = \frac{d}{d+1}$ and $d = d(\varphi, X)$. [*Hint: first show that* $d(x, \operatorname{span}\{\varphi\}) \ge c$ whenever $x \in X$ and ||x|| = 1.]

END OF PAPER