MATHEMATICAL TRIPOS Part III

Friday, 10 June, 2022 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 104

INFINITE GROUPS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Throughout this question, G and H are nontrivial groups, given by presentations $\langle X \mid R \rangle$ and $\langle Y \mid S \rangle$, respectively. The sets X and Y are assumed to be disjoint.

(a) Write down a presentation for the <i>free product</i> $G * H$ of G and H .	[2]
(b) Define the notion of a <i>reduced word</i> in G and H . By constructing a suitable action of	
$F(X \sqcup Y)$ on the set of all reduced words in G and H, prove that any two distinct reduced	
words in G and H represent distinct elements of $G * H$.	[9]

(c) Prove that G * H has trivial centre. [You may assume without proof that every element of G * H is represented by a reduced word in G and H.] [6]

(d) Suppose that G and H both have order at least 3. Prove that G * H has a subgroup isomorphic to a free group of rank 2. [You may use the Universal Property of free groups without proof.] [8]

2 (a) Give, with proof, an example of each of the following:

1. A finitely generated nilpotent nonabelian group;	[5]
---	-----

- 2. A nilpotent group which is not polycyclic; [3]
- 3. A finitely generated soluble group which is not polycyclic. [7]

(b) Let:

$$A = \begin{pmatrix} 4 & 3 \\ 1 & 1 \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$$

Let:

$$L = \left\{ \begin{pmatrix} w & x & a_{1,3} & a_{1,4} \\ y & z & a_{2,3} & a_{2,4} \\ 0 & 0 & 1 & a_{3,4} \\ 0 & 0 & 0 & 1 \end{pmatrix} : a_{i,j} \in \mathbb{Z} \text{ and } \begin{pmatrix} w & x \\ y & z \end{pmatrix} \in \langle A \rangle \right\}$$

Prove that L is polycyclic but not virtually nilpotent.

[Throughout this Question you may use without proof any standard results about the class of nilpotent, polycyclic or soluble groups, provided you state them clearly.]

Part III, Paper 104

[10]

3 Let T_3 be the *ternary rooted tree*, that is, T_3 is the graph (V, E) with vertex-set $V = \{\mathbf{0}, \mathbf{1}, \mathbf{2}\}^*$ (the set of finite formal words in the alphabet $\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$) and edge-set $E = \{(v, v\epsilon) : v \in V, \epsilon \in \{\mathbf{0}, \mathbf{1}, \mathbf{2}\}\}$. Let $\operatorname{Aut}(T_3)$ be the group of graph-automorphisms of T_3 .

3

(a) Explain briefly why the set $\{0, 1, 2\} \subset V$ is invariant under the action of Aut (T_3) on V.

Define $a, b \in \operatorname{Aut}(T_3)$ by:

 $\begin{aligned} a(\mathbf{0} \cdot v) &= \mathbf{1} \cdot v; \\ b(\mathbf{0} \cdot v) &= \mathbf{0} \cdot a(v); \end{aligned} \qquad \begin{aligned} a(\mathbf{1} \cdot v) &= \mathbf{2} \cdot v; \\ b(\mathbf{1} \cdot v) &= \mathbf{1} \cdot v; \end{aligned} \qquad \begin{aligned} a(\mathbf{2} \cdot v) &= \mathbf{0} \cdot v; \\ b(\mathbf{2} \cdot v) &= \mathbf{2} \cdot b(v). \end{aligned}$

(b) Prove that a and b have order 3.

For the remainder of the question G is the subgroup of $Aut(T_3)$ generated by the set $S = \{a, b\}.$

(c) Let $\operatorname{Stab}_G(1)$ be the kernel of the action of G on $\{0, 1, 2\}$. Prove that $\{b\}$ is a normal generating set for $\operatorname{Stab}_G(1)$ and prove that $\{b, aba^{-1}, a^{-1}ba\}$ is a generating set for $\operatorname{Stab}_G(1)$.

(d) Show that there is an injective homomorphism:

$$\phi : \operatorname{Stab}_G(1) \to \operatorname{Aut}(T_3) \times \operatorname{Aut}(T_3) \times \operatorname{Aut}(T_3)$$

given by $\phi(g) = (g_0, g_1, g_2)$, where $g(\mathbf{i} \cdot v) = \mathbf{i} \cdot g_\mathbf{i}(v)$ for $\mathbf{i} = 0, 1$ or 2. Prove that the image of ϕ is contained in $G \times G \times G$ and show that G is an infinite group. [6]

(e) Let K be the normal closure in G of x = [a, b]. Prove that K has finite index in G. By considering the element $[a^{-1}ba, x]$, or otherwise, prove that K contains a subgroup isomorphic to $K \times K \times K$.

[2]

[5]

[6]

[6]

4 (a) Define what it means for a group to be <i>residually finite</i> .	[3]
(b) Prove that every finitely generated abelian group is residually finite.	[6]
(c) Prove that for any finitely generated group G and any finite group Q , there are finitely many homomorphisms from G to Q .	[2]
The group H is called <i>Hopfian</i> if every surjective homomorphism $H \to H$ is bijective.	
(d) Using (c), prove that every finitely generated residually finite group is Hopfian.	[6]
(e) Let X be a finite set and let $F(X)$ be the free group on X. Let $Y \subset F(X)$ be a generating set for $F(X)$, with $ Y = X $. Prove that Y is a basis for $F(X)$. [You may assume without proof that $F(X)$ is residually finite. You may assume any other standard properties of free groups, provided you state them clearly.]	[5]
(f) Prove that $F(\mathbb{N})$ (the free group on the set of natural numbers) is not Hopfian.	[3]
5 Let G and H be groups. (a) Define the (regular restricted) wreath product H wr G of H by G . Prove that	

if G and H are finitely generated, then so is $H \operatorname{wr} G$.	[8]
(b) Prove that, if G is infinite and H is nonabelian, then $H \le G$ is not residually finite.	[6]
(c) Prove that, if H is a nontrivial finitely generated group, then $H \operatorname{wr} \mathbb{Z}$ has exponential growth.	[6]

(d) Prove that, if H is a nontrivial group, then $H \operatorname{wr} \mathbb{Z}$ has trivial centre. [5]

END OF PAPER

4