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1 Throughout this question, G and H are nontrivial groups, given by presentations
〈X | R〉 and 〈Y | S〉, respectively. The sets X and Y are assumed to be disjoint.

(a) Write down a presentation for the free product G ∗H of G and H. [2]

(b) Define the notion of a reduced word in G and H. By constructing a suitable action of
F (X tY ) on the set of all reduced words in G and H, prove that any two distinct reduced
words in G and H represent distinct elements of G ∗H. [9]

(c) Prove that G∗H has trivial centre. [You may assume without proof that every element
of G ∗H is represented by a reduced word in G and H.] [6]

(d) Suppose that G and H both have order at least 3. Prove that G ∗H has a subgroup
isomorphic to a free group of rank 2. [You may use the Universal Property of free groups
without proof.] [8]

2 (a) Give, with proof, an example of each of the following:

1. A finitely generated nilpotent nonabelian group; [5]

2. A nilpotent group which is not polycyclic; [3]

3. A finitely generated soluble group which is not polycyclic. [7]

(b) Let:

A =

(
4 3
1 1

)
∈ SL2(Z).

Let:

L =

{



w x a1,3 a1,4
y z a2,3 a2,4
0 0 1 a3,4
0 0 0 1


 : ai,j ∈ Z and

(
w x
y z

)
∈ 〈A〉

}

Prove that L is polycyclic but not virtually nilpotent. [10]

[Throughout this Question you may use without proof any standard results about
the class of nilpotent, polycyclic or soluble groups, provided you state them clearly.]
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3 Let T3 be the ternary rooted tree, that is, T3 is the graph (V,E) with vertex-set
V = {0,1,2}∗ (the set of finite formal words in the alphabet {0,1,2}) and edge-set
E =

{
(v, vε) : v ∈ V, ε ∈ {0,1,2}

}
. Let Aut(T3) be the group of graph-automorphisms of

T3.

(a) Explain briefly why the set {0,1,2} ⊂ V is invariant under the action of Aut(T3) on
V . [2]

Define a, b ∈ Aut(T3) by:

a(0 · v) = 1 · v; a(1 · v) = 2 · v; a(2 · v) = 0 · v;

b(0 · v) = 0 · a(v); b(1 · v) = 1 · v; b(2 · v) = 2 · b(v).

(b) Prove that a and b have order 3. [5]

For the remainder of the question G is the subgroup of Aut(T3) generated by the set
S = {a, b}.
(c) Let StabG(1) be the kernel of the action of G on {0,1,2}. Prove that {b} is a
normal generating set for StabG(1) and prove that {b, aba−1, a−1ba} is a generating set
for StabG(1). [6]

(d) Show that there is an injective homomorphism:

φ : StabG(1)→ Aut(T3)×Aut(T3)×Aut(T3)

given by φ(g) = (g0, g1, g2), where g(i ·v) = i ·gi(v) for i = 0,1 or 2. Prove that the image
of φ is contained in G×G×G and show that G is an infinite group. [6]

(e) Let K be the normal closure in G of x = [a, b]. Prove that K has finite index in G.
By considering the element [a−1ba, x], or otherwise, prove that K contains a subgroup
isomorphic to K ×K ×K. [6]
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4 (a) Define what it means for a group to be residually finite. [3]

(b) Prove that every finitely generated abelian group is residually finite. [6]

(c) Prove that for any finitely generated group G and any finite group Q, there are finitely
many homomorphisms from G to Q. [2]

The group H is called Hopfian if every surjective homomorphism H → H is bijective.

(d) Using (c), prove that every finitely generated residually finite group is Hopfian.
[6]

(e) Let X be a finite set and let F (X) be the free group on X. Let Y ⊂ F (X) be a
generating set for F (X), with |Y | = |X|. Prove that Y is a basis for F (X). [You may
assume without proof that F (X) is residually finite. You may assume any other standard
properties of free groups, provided you state them clearly.] [5]

(f) Prove that F (N) (the free group on the set of natural numbers) is not Hopfian. [3]

5 Let G and H be groups.

(a) Define the (regular, restricted) wreath product H wrG of H by G. Prove that
if G and H are finitely generated, then so is H wrG. [8]

(b) Prove that, if G is infinite and H is nonabelian, then H wrG is not residually finite. [6]

(c) Prove that, if H is a nontrivial finitely generated group, then H wrZ has exponential
growth. [6]

(d) Prove that, if H is a nontrivial group, then H wrZ has trivial centre. [5]
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