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(a) If (A,m) is a Noetherian local ring, give the definition of an ideal of definition
of A.

For a finitely generated A-module M and ideal of definition I, state the relationship
between the Hilbert function

χ(M, I;n) = `(M/InM)

and dimM .

(b) Let k be a field. Suppose f ∈ (x, y) ⊆ k[x, y] is a polynomial. Let

A = (k[x, y]/(f))(x,y).

Calculate the Hilbert function χ(A,m;n) of A.

Calculate the Hilbert polynomial of A, i.e., the polynomial function in n which
agrees with χ(A,m;n) for large n.

What is a simple way of describing the coefficient of the leading term of the Hilbert
polynomial in terms of f?

(c) Let k be a field, and consider the graded ring S = k[x, y] where the degree of
x is 1 and the degree of y is 2, so that, e.g., x2y + y2 is a homogeneous element of S of
degree 4. Calculate the Hilbert function

FS(n) = `(Sn).

Does this agree with a polynomial for large n? If not, why does this not contradict a result
from lectures?

2

Let p ∈ Z be a prime number, and denote by Zp the completion of Z at the prime
ideal (p).

(a) Give a brief description of Zp.

(b) For a ∈ Zp, denote ord(a) = sup{m | a ∈ (pm)} (so that ord(p2) = 2 and
ord(0) = +∞). Set

Zp〈T 〉 =

{ ∞∑

n=0

anT
n | an ∈ Zp, ord(an)→ +∞ when n→ +∞

}
.

Note Z[T ] ⊆ Zp〈T 〉 ⊂ Zp[[T ]] as sets, where the latter is the ring of formal power series in
T with coefficients in Zp.

Show that Zp〈T 〉 is a subring of Zp[[T ]].

Show that Zp〈T 〉 is the completion of Z[T ] with respect to the ideal (p) ⊆ Z[T ].
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Let S be a Noetherian graded ring. If I ⊆ S is an arbitrary ideal, denote by I∗ the
ideal contained in I generated by all homogeneous elements of I.

(a) If p is prime, show that p∗ is also prime.

(b) If p is a homogeneous prime ideal and q is a p-primary ideal, show that q∗ is
also p-primary.

(c) If p is an inhomogenenous prime ideal, show that there are no primes contained
between p and p∗. Show that ht(p) = ht(p∗) + 1. [Hint: it may be useful to consider
the following construction. Let R be a graded domain, and U ⊆ R the set of non-zero
homogeneous elements. Consider the ring U−1R.]

4

Let A be a Noetherian domain, M an A-module. We say M is torsion-free if
Ann(m) = 0 for all m ∈M . We denote by M∗ the A-module HomA(M,A).

Define a natural map M →M∗∗, by a 7→ (f 7→ f(a)). We say M is reflexive if it is
finitely generated as an A-module and the natural map M →M∗∗ is an isomorphism.

(a) Prove that if M is a finitely generated A-module, then there is an exact sequence

0 −→M∗ −→ N −→ P → 0

where N is a finitely generated free A-module and P is torsion-free.

(b) Prove that an A-module M is reflexive if and only if it can be included in an
exact sequence

0 −→M −→ N −→ P → 0

where N is a finitely generated free A-module and P is torsion-free. Thus M∗ is reflexive
whenever M is a finitely generated A-module. [Hint: You might find it useful to localize
at the zero ideal of A in the course of the proof.]
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Consider the ideal

I = (x3y2, x2y3 − x2yzw, x2y2z − x2z2w, x3yz, x3z2) ⊆ k[x, y, z, w],

where k is a field.

(a) Show that the isolated associated primes of k[x, y, z, w]/I are

p1 = (x), p2 = (y, z).

Find the radical of I.

Given a primary decomposition I =
⋂

i qi of I, give generators for the ideals q1, q2
with

√
q1 = p1,

√
q2 = p2.

(b) Show that p3 = (x, y2 − zw) is also an associated prime of k[x, y, z, w]/I.
Show that {p1, p2, p3} is the complete set of associated primes, by finding a primary
decomposition for I or otherwise. [Note: You do not need to show p3 is prime.]

6

Let A be a ring, S ⊆ A a multiplicatively closed subset.

(a) Show that giving an S−1A-module M is the same as giving an A-module M such
that for any s ∈ S, the A-module endomorphism m 7→ s ·m of M is an automorphism.

Show that if M is an A-module such that multiplication by each element of S acts
as an automorphism of M , then the natural map M → S−1M is an isomorphism.

(b) Let M be an A-module and N ′ ⊆ S−1M an S−1A-submodule. Let N be the
inverse image of N ′ under the natural map M → S−1M . Show that N ′ ∼= S−1N .
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