MATHEMATICAL TRIPOS Part III

Monday, 6 June, 2022 $\quad 1{:}30~\mathrm{pm}$ to 4:30 pm

PAPER 101

COMMUTATIVE ALGEBRA

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

(a) If (A, \mathfrak{m}) is a Noetherian local ring, give the definition of an *ideal of definition* of A.

For a finitely generated A-module M and ideal of definition I, state the relationship between the Hilbert function

$$\chi(M, I; n) = \ell(M/I^n M)$$

and $\dim M$.

(b) Let k be a field. Suppose $f \in (x, y) \subseteq k[x, y]$ is a polynomial. Let

$$A = (k[x, y]/(f))_{(x,y)}$$

Calculate the Hilbert function $\chi(A, \mathfrak{m}; n)$ of A.

Calculate the Hilbert polynomial of A, i.e., the polynomial function in n which agrees with $\chi(A, \mathfrak{m}; n)$ for large n.

What is a simple way of describing the coefficient of the leading term of the Hilbert polynomial in terms of f?

(c) Let k be a field, and consider the graded ring S = k[x, y] where the degree of x is 1 and the degree of y is 2, so that, e.g., $x^2y + y^2$ is a homogeneous element of S of degree 4. Calculate the Hilbert function

$$F_S(n) = \ell(S_n).$$

Does this agree with a polynomial for large n? If not, why does this not contradict a result from lectures?

$\mathbf{2}$

Let $p \in \mathbb{Z}$ be a prime number, and denote by \mathbb{Z}_p the completion of \mathbb{Z} at the prime ideal (p).

(a) Give a brief description of \mathbb{Z}_p .

(b) For $a \in \mathbb{Z}_p$, denote $\operatorname{ord}(a) = \sup\{m \mid a \in (p^m)\}$ (so that $\operatorname{ord}(p^2) = 2$ and $\operatorname{ord}(0) = +\infty$). Set

$$\mathbb{Z}_p\langle T\rangle = \left\{\sum_{n=0}^{\infty} a_n T^n \,|\, a_n \in \mathbb{Z}_p, \, \operatorname{ord}(a_n) \to +\infty \text{ when } n \to +\infty\right\}.$$

Note $\mathbb{Z}[T] \subseteq \mathbb{Z}_p\langle T \rangle \subset \mathbb{Z}_p[[T]]$ as sets, where the latter is the ring of formal power series in T with coefficients in \mathbb{Z}_p .

Show that $\mathbb{Z}_p\langle T \rangle$ is a subring of $\mathbb{Z}_p[[T]]$.

Show that $\mathbb{Z}_p\langle T \rangle$ is the completion of $\mathbb{Z}[T]$ with respect to the ideal $(p) \subseteq \mathbb{Z}[T]$.

Part III, Paper 101

3

Let S be a Noetherian graded ring. If $I \subseteq S$ is an arbitrary ideal, denote by I^* the ideal contained in I generated by all homogeneous elements of I.

(a) If \mathfrak{p} is prime, show that \mathfrak{p}^* is also prime.

(b) If $\mathfrak p$ is a homogeneous prime ideal and $\mathfrak q$ is a $\mathfrak p\text{-}\mathrm{primary}$ ideal, show that $\mathfrak q^*$ is also $\mathfrak p\text{-}\mathrm{primary}.$

(c) If \mathfrak{p} is an inhomogeneous prime ideal, show that there are no primes contained between \mathfrak{p} and \mathfrak{p}^* . Show that $\operatorname{ht}(\mathfrak{p}) = \operatorname{ht}(\mathfrak{p}^*) + 1$. [Hint: it may be useful to consider the following construction. Let R be a graded domain, and $U \subseteq R$ the set of non-zero homogeneous elements. Consider the ring $U^{-1}R$.]

$\mathbf{4}$

Let A be a Noetherian domain, M an A-module. We say M is torsion-free if Ann(m) = 0 for all $m \in M$. We denote by M^* the A-module $Hom_A(M, A)$.

Define a natural map $M \to M^{**}$, by $a \mapsto (f \mapsto f(a))$. We say M is *reflexive* if it is finitely generated as an A-module and the natural map $M \to M^{**}$ is an isomorphism.

(a) Prove that if M is a finitely generated A-module, then there is an exact sequence

$$0 \longrightarrow M^* \longrightarrow N \longrightarrow P \to 0$$

where N is a finitely generated free A-module and P is torsion-free.

(b) Prove that an A-module M is reflexive if and only if it can be included in an exact sequence

$$0 \longrightarrow M \longrightarrow N \longrightarrow P \to 0$$

where N is a finitely generated free A-module and P is torsion-free. Thus M^* is reflexive whenever M is a finitely generated A-module. [Hint: You might find it useful to localize at the zero ideal of A in the course of the proof.] $\mathbf{5}$

Consider the ideal

$$I = (x^3y^2, x^2y^3 - x^2yzw, x^2y^2z - x^2z^2w, x^3yz, x^3z^2) \subseteq k[x, y, z, w],$$

where k is a field.

(a) Show that the isolated associated primes of k[x, y, z, w]/I are

$$\mathfrak{p}_1 = (x), \qquad \mathfrak{p}_2 = (y, z).$$

Find the radical of I.

Given a primary decomposition $I = \bigcap_i \mathfrak{q}_i$ of I, give generators for the ideals $\mathfrak{q}_1, \mathfrak{q}_2$ with $\sqrt{\mathfrak{q}_1} = \mathfrak{p}_1, \sqrt{\mathfrak{q}_2} = \mathfrak{p}_2$.

(b) Show that $\mathfrak{p}_3 = (x, y^2 - zw)$ is also an associated prime of k[x, y, z, w]/I. Show that $\{\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3\}$ is the complete set of associated primes, by finding a primary decomposition for I or otherwise. [Note: You do not need to show \mathfrak{p}_3 is prime.]

6

Let A be a ring, $S \subseteq A$ a multiplicatively closed subset.

(a) Show that giving an $S^{-1}A$ -module M is the same as giving an A-module M such that for any $s \in S$, the A-module endomorphism $m \mapsto s \cdot m$ of M is an automorphism.

Show that if M is an A-module such that multiplication by each element of S acts as an automorphism of M, then the natural map $M \to S^{-1}M$ is an isomorphism.

(b) Let M be an A-module and $N' \subseteq S^{-1}M$ an $S^{-1}A$ -submodule. Let N be the inverse image of N' under the natural map $M \to S^{-1}M$. Show that $N' \cong S^{-1}N$.

END OF PAPER