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1 (a) Consider a supermassive black hole of mass MBH accreting material in a steady
state. If this material is made up of optically thin ionized hydrogen derive the expression
for the Eddington luminosity and explain its physical meaning.

Consider now that the material is made of electron-positron pairs. Derive by how
much the Eddington luminosity is changed and explain why this is the case.

A small gas cloud with opacity per unit mass κ is initially at rest at a distance r
from this supermassive black hole. Derive the expression for the Eddington luminosity in
this case. Suddenly, the black hole’s luminosity rapidly increases such that this gas cloud
is pushed outwards. From a conservation of energy argument derive the gas cloud velocity
at infinity.

(b) Consider an axisymmetric fluid in pure rotation around a central supermassive
black hole of mass MBH which dominates the total mass of the system. If the only forces
present are gravity, pressure gradients and rotation, write down all components of the
momentum equation in cylindrical-polar coordinates and define the effective gravity of
this system.

Assuming that radiation pressure is the dominant pressure force and that the fluid
is characterized by constant opacity per unit mass κ, relate the flux of radiant energy to
the effective gravity in equilibrium.

Consider now a specific geometry of this rotating fluid, assuming it is contained
within the surfaces generated by the revolution of two straight lines at angles ±α to the
equatorial plane, where α is not negligible. Sketch the edge-on cross section of this disc
and determine the value of effective gravity at the surfaces.

Taking advantage of the geometry of the system, derive that the maximum emitted
luminosity by the portion of the disc between two radii R1 and R2 (in cylindrical-polar
coordinates) is

Lmax = LEdd sinα ln(R2/R1) , (1)

where LEdd is the Eddington luminosity. If R2 is significantly larger than R1 explain the
physical meaning of Lmax and of the dependence of Lmax on α.
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2 (a) Consider a dark matter halo well described by a singular isothermal sphere with
velocity dispersion σ. A fraction of the total mass of the system fgas is in gas (made of
hydrogen atoms) which is in hydrostatic equilibrium. A supermassive black hole of mass
MBH, which is orbiting this system in equilibrium, is found in the outskirts of the system.
Assuming that the dynamical friction exerted by the dark matter distribution alone is
causing it to return to the centre, estimate what is the likely gas accretion rate onto this
black hole as a function of MBH, fgas, σ and its distance from the centre r and explain
your reasoning.

(b) Assume a steady, spherically symmetric accretion on to a black hole with mass
MBH. Considering the flow well within the accretion radius racc = 2GMBH/c

2
s,∞, where

G is the gravitational constant, and cs,∞ is the gas sound speed at infinity, calculate the
optical depth to Thompson scattering τ as a function of accretion rate Ṁ .

At what accretion rate Ṁcrit is τ = 1 at the Schwarzschild radius? How does Ṁcrit

relate to the Eddington accretion rate ṀEdd?

For Ṁ > Ṁcrit what happens to the innermost parts of the flow? Calculate the
radius of the surface at which τ = 1 as a function of Ṁ/Ṁcrit.

Furthermore, show that there exists a trapping radius rt within which the inflow
speed is higher than the outward photon diffusion speed and calculate its expression as a
function of Ṁ/Ṁcrit. Explain the physical meaning of rt.

What is the luminosity, L, that escapes to infinity in the regime Ṁ > Ṁcrit ? How
does the radiative efficiency ε depend on Ṁ/ṀEdd?
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3 (a) Consider a standard, steady, thin accretion disc around a supermassive black
hole with mass MBH. Adopting cylindrical-polar coordinates write down the expression
for the mass conservation equation.

Recalling that radial velocity uR for a thin Keplerian accretion disc is given by

uR = −3
∂/∂R[νΣR1/2]

ΣR1/2
, (1)

where ν is the kinematic viscosity, Σ is the gas surface density and R is the cylindrical
radius, derive an expression for uR in the steady state which depends on ν and R only.
[Hint: When calculating the expression for νΣ think about the appropriate inner boundary
condition].

(b) Recalling further that the viscous dissipation F (R) is given by

F (R) = νΣR2

(
dΩ

dR

)2

, (2)

where Ω is the angular velocity, calculate the total luminosity emitted from the disc to be
GMBHṁ/(2RISCO) and explain its physical meaning. Here G is the gravitational constant,
ṁ is the mass accretion rate and RISCO is the radius of the innermost stable circular orbit.

Calculate the radius inside of which half of the total luminosity is radiated in units
of RISCO and comment on the physical implication of this result.

(c) Once the accretion disc density exceeds the critical value given by MBH/R
3 disc

self-gravity becomes important. Show that the corresponding critical radius is given by

Rcrit = (3πα)8/9(γkB/µ)4/3
(

3MBH

8πσSB

)1/3

(Gṁ)−5/9 , (3)

where α is the viscosity parameter, γ is the adiabatic index, kB is the Boltzmann constant,
µ is the mean molecular weight, and σSB is the Stefan-Boltzmann constant. To derive this
expression use the uR from (a) above, keeping only first order terms. Further assume
that sound speed can be expressed through the effective temperature which is set by the
viscous dissipation from (b), keeping again only first order terms and assuming the black
body approximation holds.
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