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1 Stating any assumptions, derive the linearized Euler equations for a pressureless
fluid in comoving coordinates as

d

dt
(av) = −∇Φ,

where a is the scalefactor, v is the peculiar velocity and Φ is the comoving gravitational
potential.

Justifying any assumptions, show that at early times

v = −∇Φi

a

∫
D(a)

a
dt,

where D(a) is the linear growth rate. Here, and henceforth, the subscripted roman i refers
to an initial or fiducial epoch.

Show that D(a) satisfies

D(a)

a
=

1

4πGρ̄m,i

d

dt

(
a2
dD

dt

)
,

where ρ̄m,i is the mean matter density at the fiducial epoch.

Hence, show that the displacement ψ(t) of any particle is (the Zeldovich approxim-
ation)

ψ(t) = − D(a)

4πGρ̄m,i
∇Φi.

The spin of a galaxy arises from the tidal field of all its neighbours. Suppose the
material that creates a dark matter halo occupies a Lagrangian volume VL in the early
universe. The angular momentum of this material is

J =

∫

VL

d3 xiρ̄ma
3(ax− ax̄)× v.

where x̄ is the barycentre of the volume and a is the scale-factor. Using the Zeldovich
approximation, show that this can be re-written to lowest order as

J = −ρ̄ma5ḃ
∫

VL

d3xi (xi − x̄i)×∇Φi,

for a suitably defined b(t).

Give examples of two instances when J = 0.
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By Taylor expanding the potential, show that

Ji = −a2ḃεijkTjlIlk,

where εijk is the completely antisymmetrical tensor,

Ilk =

∫

V
d3xi (xi − x̄i)l(xi − x̄i)ka

3ρ̄m,

and
Tjk = ∇j∇kΦi|x̄i

.

Give physical interpretations of the tensors Ilk and Tjk.

Show that in an Einstein-de Sitter Universe, the modulus of the angular momentum
J ∝ t.

Why is this an underestimate of the final angular momentum of a dark halo in a
simulation?
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2 The mass function of galaxies is well described by a Schechter funtion

φ(M) = φ? (M/M?)
α exp(−M/M?),

where M? and φ? are constants and α ≈ −1. Provide a log-log plot of the function and
comment on its behaviour at low and high masses.

Carefully justifying any assumptions, derive the tensor virial theorem of a self-
gravitating system in the form

2Kij +Wij = 0,

where the kinetic energy Kij and potential energy Wij tensors are

Kij =
1

2

∫
ρ〈vivj〉dV,

Wij = −
∫
ρxi

∂Φ

∂xj
dV,

and angled brackets are averages over the distribution.

By denoting the traces as K = Kii and W = Wii, show that the total energy E of
the system satifies

E = −K =
W

2
.

Now consider a system with initial total mass MI, total energy EI, mean square
velocity of stars 〈v2I 〉 and gravitational radius RI. Show that

EI = −1

2
MI〈v2I 〉 = −GM

2
I

2RI
.

Suppose that systems are accreted with energies totalling EA, masses totalling MA,
and mean square speeds averaging 〈v2A〉. If we define the fractions η = MA/MI and
ε = 〈v2A〉/〈v2I 〉, show that the final energy of the system is

EF =
1

2
MI〈v2I 〉(1 + εη),

explaining carefully any assumptions made.

Show that the ratio of final to initial mean square speeds is

〈v2F〉
〈v2I 〉

=
1 + ηε

1 + η
.

Show further that the ratio of final to initial gravitational radii is

RF

RI
=

(1 + η)2

1 + ηε
.
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If the total mass of the system increases by a factor of 2 by many minor mergers,
show that the density is reduced by a factor of 32.

Observationally, galaxies at a redshift of 2 are smaller in size than present day
ellipticals by a factor of three to five, yet their stellar mass densities are an order of
magnitude higher. Suggest an explanation of these results using virial arguments and the
shape of the Schechter mass function.
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3 A simple model of a dark matter halo is the isothermal sphere with density and
potential

ρ(r) =
v20

4πGr2
, φ(r) = v20 log(r/r0),

where r is spherical polar radius and v0 and r0 are constants. Show that the rotation curve
is completely flat and that the isotropic velocity dispersion of the dark matter particles is
σ = v0/

√
2.

The Chandrasekhar dynamical friction formula for a subhalo of mass M moving
with velocity v through a dark matter halo with density ρ is

dv

dt
= −4πG2Mρ log Λ

v3

(
erf(X)− 2X√

π
exp(−X2)

)
v,

where erf is the error function, X = v/(
√

2σ) and Λ is the Coulomb logarithm. Find the
limiting behaviour of the dynamical friction force at low and high speed v, and provide a
physical explanation of your results.

Consider a subhalo moving on a circular orbit through a dark halo modelled as an
isothermal sphere. Show that the radius of the subhalo’s orbit changes with time like

r
dr

dt
= −0.428 log Λ

GM

v0
.

(Hint: You may assume that erf(1)− 2/(e
√
π) = 0.428.)

Hence, show that a subhalo on an orbit of radius ri sinks to the centre under the
effects of dynamical friction on a timescale

tdf =
1.17

log Λ

r2i v0
GM

.

If, instead, the subhalo is moving on an eccentric orbit, let us define the circularity
as

η =
L

Lcirc(E)
,

where E is the energy and L the angular momentum of the orbit, whilst Lcirc is the angular
momentum of a circular orbit with energy E. Show that, for the isothermal sphere,

Lcirc(E) = v0r0 exp

[
E − v20/2

v20

]
.

Hence, show that, at fixed position,

dη

dt
= η

[
1

L

dL

dt
− 1

v20

dE

dt

]
.
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If the eccentricity of the subhalo’s orbit is e, show that it evolves under the effects
of dynamical friction as:

de

dt
=
η

v

de

dη

[
1 − v2

v20

]
dv

dt
.

Assuming that η is a monotonically decreasing function of eccentricity e, show that
dynamical friction causes the subhalo’s orbit to become more circular at pericentre.

How does dynamical friction change the subhalo’s orbit at apocentre?

Estimate roughly the overall effect of dynamical friction on the eccentricity?
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4 (a) Define the two-point correlation function ξ(r) for a continuous density perturb-
ation field δ(x), which may be assumed homogeneous and isotropic.

Show that the Fourier transform of the two-point correlation function is the power
spectrum

P (k) =

∫
d3rξ(r) exp(−ik · r),

where k = |k|.
Show that the variance of the density field is related to the power spectrum by

σ2 =
1

2π2

∫
dk k2P (k).

(Hint: You may assume standard theorems in Fourier analysis.)

Using a top-hat window function of volume V , we smooth the density field. Show
that the mass variance is related to the correlation function by

σ2(M) =
1

V 2

∫ ∫
d3x1d

3x2ξ(|x1 − x2|).

Express the mass variance in terms of the two-point correlation function and the
size R of the top-hat filter.

If the two-point correlation function of galaxies is a power-law

ξ(r) =

(
r

r0

)γ
,

with r0 = 5h−1 Mpc and γ = −1.8, find an expression for the cosmological parameter σ8.
Here, h is the Hubble constant in units of 100 kms−1Mpc−1.

What assumption underlies this calculation?

(b) Derive the Silk damping scale, or the lengthscale over which a photon can diffuse
in time t, as

λd =

(
ct

3σTne

)1/2

,

where σT is the Thomson scattering cross-section, ne is the electron number density and
c is the velocity of light.

Show that the Silk damping scale in comoving units at the epoch of recombination
in an Einstein-de Sitter Universe is

λcomd ≈ 6

5

(
ctrec

3nrecσT

)1/2

(1 + zrec),

where trec and zrec are the time and redshift at recombination, whilst nrec is the
corresponding electron number density. (Hint: As recombination takes place during the
matter-dominated era, you may ignore the different behavior of the scale-factor during the
radiation-dominated era).
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Explain the consequences of Silk damping for the growth of perturbations in an
Einstein-de Sitter Universe with (i) baryons and radiation, and (ii) baryons, radiation and
cold dark matter.
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