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A two-dimensional disturbance is created in an inviscid incompressible Boussinesq
fluid with a stable background density stratification ρ̂(z) characterised by no diffusion of
mass and constant buoyancy frequency

N =

√
− g

ρ0

dρ̂

dz
,

where ρ0 is a reference density and g gravity. The disturbance is described by the velocity
field u(x, t) = ∇ ∧ (ψŷ), ψ = ψ(x, z, t) and buoyancy perturbation field b(x, t) in a
Cartesian coordinate system x = (x, y, z). Here, t is time, x̂, ŷ, ẑ are the unit Cartesian
vectors and ẑ is oriented vertically upwards.

(a) Starting from the equations for conservation of mass and momentum, derive
the equations governing a disturbance of arbitrary amplitude in terms of the
streamfunction ψ and buoyancy perturbation b. Under what condition(s) can this
system be linearised? Show that for a linear disturbance the streamfunction satisfies

∂2

∂t2
∇2ψ +N2∂

2ψ

∂x2
= 0.

(b) Suppose the form of the disturbance is given by ψ = εψ̃ eiφ and b = εb̃ eiφ for ε > 0
with constant ψ̃, b̃ ∈ C, and ψ̃, b̃ = O(1). Here, φ = k · x − ωt with constant
k = (k, 0,m) and 0 < ω < N . Without linearising, derive the equation for ψ̃
governing this disturbance and the relationship between k and ω necessary for a
non-trivial solution. Discuss the behaviour of this solution and the role played by ε.

(c) Now suppose the form of the disturbance is given by ψ = εψ̃(x̂, ẑ, t̂) eiφ, where
x̂ = γx, ẑ = γz and t̂ = γt with ε, γ � 1. Determine the equation governing the
evolution of ψ̃ at O(εγ). Consider a disturbance for which initially k · ∇ψ̃ = 0.
At what speed and in what direction does the structure of ψ̃ propagate? Give a
physical interpretation of this behaviour.
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During the winter, a deep lake reaches a uniform temperature T0 = 4◦C where
the density of water is maximum. An accident (in calm conditions) at the centre of the
lake releases a volume V of contaminated water at temperature T1 = 8◦C. As the toxic
contaminant does not significantly affect the density of the water, we can take the equation
of state as ρ = ρ0[1 − β(T − T0)

2], where β << 1 is the quadratic thermal expansion
coefficient. To leading order, the volume of the contaminated water is conserved, but it
cools as it spreads across the lake as an axisymmetric shallow water flow. The evolution
of the excess heat content per unit mass of the contaminated layer H = Cp(T − T0) may
be modelled by the heat flux FH = KCp(T − T0) per unit area, where Cp is the constant
heat capacity and K is a constant heat transfer coefficient. The role of surface tension
and viscosity may be ignored and the lake can be assumed to remain at temperature T0.

(a) State the conditions required for this flow to be treated as shallow water. Can the
flow be considered Boussinesq? (You must justify your answer and comment on the
role of the free surface.)

(b) Assuming the flow is axisymmetric, what are the shallow water equations for depth,
velocity and non-dimensional temperature excess θ = (T − T0)/(T1 − T0) governing
this flow? Identify the shallow water wave speed c and determine the characteristics
λ for the flow. Determine also the equations governing u, θ and c along each of the
characteristics.

(c) Why is a front condition necessary to determine the spread of the contaminated
water? Use a suitable front condition to derive an integral model for the front
location and excess temperature of the current (you may assume that the current
depth and excess temperature are the same at all radial locations within the current).
What is the maximum area the contaminated water will cover?
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Consider a well insulated cuboidal room with a vent of area Af located in the floor
(z = 0) and a vent of area Ac located in the ceiling (z = H). Both vents are connected
directly to the outside environment where the density ρ0 is uniform and there is no wind.
The room has a floor area Ar � H2. A localised heat source providing buoyancy flux
F1 > 0 is located on the floor near the centre of the room. A high-Reynolds-number flow
develops above this heat source, ultimately leading to a steady state where there is an
interface at z = h1. Above this interface the air density is approximately uniform and
equal to ρ1.

(a) Describe ‘Batchelor entrainment’ as it may apply to the fluid motion developing
above the heat source. State the Boussinesq approximation and discuss any
limitations to applying this to the flow. Using the Boussinesq approximation and
assuming the heat flux arises from a point source, state a suitable set of equations
for describing the flow above the heat source for z 6 h1. Give expressions for the
volume flux Q1(z), momentum flux M1(z) and reduced gravity g′1(z) within this
flow.

(b) Sketch the vertical pressure profile (far from the openings) both inside and outside
the room. Establish the conditions necessary for the steady height of the interface
to be h1 = H/2.

(c) Suppose a second localised heat source with buoyancy flux F2 < F1 is introduced
to the room and positioned on the floor far from the first heat source. The
vents are reconfigured so that Ac = Af and the original interface remains at
h1 = H/2. This second source causes a second interface to form at z = h2 < h1
with an approximately uniform density ρ2 in the region h2 6 z < h1. Sketch key
aspects of the steady flow that develops and the pressure fields both inside the
room and outside. By assuming the buoyancy associated with F2 does not change
Q1(z) determined in (a), find h2/h1 in terms of F1 and F2. Determine ĝ′1 and
ĝ′2, the reduced gravities relative to ambient air of the layers h2 6 z < h1 and
h1 6 z < H, respectively. Derive an explicit expression for the area of the vents
required to achieve these conditions (you need not substitute h1, h2, ĝ

′
1 or ĝ′2 into

this expression).
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