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1 Answer all parts of the question.

(a) For a system with a conserved scalar order parameter φ describing a local
composition variable, in which F = f(φ) + κ

2 (∇φ)2, show that minimizing the free energy
F [φ] =

∫
F dr at fixed global composition requires the chemical potential µ(r) ≡ δF/δφ

to be constant in space.

(b) For the case f(φ) = a
2φ

2 + b
4φ

4 with a < 0, consider in mean-field theory an
interfacial profile that connects two bulk phases at the binodal densities φ = ±φB =
±(−a/b)1/2. Let x be a coordinate perpendicular to the interfaces and take φ to be a
function of x only. Show that the constant value of µ is zero.

(c) Writing φ(x) = φBg(u) with u = x/ξ0 and ξ20 = −2κ/a, establish that

2g2 − g4 + g′2 = 1.

Hence show that the interfacial profile takes the form φ(x) = ±φB tanh[(x−x0)/ξ0]. What
fixes x0?

(d) Now consider the more general case where f(φ) is a smooth symmetric function
of φ with minima at ±φB, a maximum at φ = 0 and no other turning points; and where
κ = κ(φ) is any smooth positive function. Give an explicit expression for µ(r) in terms of
φ and its spatial derivatives, and show that once again µ = 0 everywhere.

(e) By considering the integral
∫
V µ(r)∇φ(r) dr, for an arbitrary domain V, or

otherwise, show that in mean-field theory the order parameter φ(r) in general obeys

f(φ)− κ(φ)

2
(∇φ)2 = constant.

Find the constant, and hence obtain the following equation for (the inverse x(φ)) of the
interfacial profile φ(x):

x(φ)− x0 = ±
∫ φ

0

√
κ(ψ)

2(f(ψ)− f(φB))
dψ. (1)

where x0 is the midpoint position of the profile.

(f) Show also that the interfacial tension obeys

σ =

∫ ∞

−∞
κ(φ)(∂xφ)2 dx.

(g) Confirm that for the case in part (c), the solution given for φ(x) solves Eq.(1).
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2 Answer all parts of the question.

(a) A certain polar liquid crystal has free energy F [p] =
∫
F dr with

F(p) =
a

2
|p|2 +

b

4
|p|4 +

κ

2
(∇ipj)(∇ipj) (1)

where b and κ are positive constants. Explain why for a < 0 the equilibrium state consists
of uniform p with magnitude p0 = (−a/b)1/2. Why is this state not reached easily if the
system is quenched suddenly from positive to negative a?

(b) Restricting attention to the two dimensional case, briefly explain the concept of
topological defects in polar liquid crystals and define the topological charge q. (A detailed
exposition of homotopy theory is not required.)

(c) Sketch two different field configurations as examples of q = +1 defects and one
for a q = −1 defect. For the cases with q = +1 explain why these two field configurations
are topologically equivalent.

(d) Consider in 2D a field configuration p(r) = −p(r)r̂. Where is the topological
defect and what is its charge? Show that the local free energy density can be written

F =
a

2
p2 +

b

4
p4 +

κ

2

[(
dp

dr

)2

+
(p
r

)2
]
.

(e) Assuming that p differs from p0 only in a defect-core region, establish that
the resulting F contains an elastic term scaling as ln(L/r0) whose coefficient you should
calculate. Here L is either the system size or the distance to a neighbouring defect of
opposite sign, and r0 is the size of the core.

(f) State, without detailed calculation, why defects generically dissociate into those
of the smallest allowed |q|. Briefly explain why for a nematic liquid crystal in 2D, this
quantum of charge corresponds to q = ±1/2 rather than q = ±1 for the polar case.

(g) Another 2D liquid crystal, comprising a mixture of polar and apolar rodlike
molecules, is capable of supporting nematic and polar order simultaneously. Its free energy
density is F = Fp + FQ + Fc where Fp obeys Eq.(1) above, FQ = αQijQji + β(QijQji)

2 +
K(∇iQij)(∇kQkj)/2, and the coupling term is

Fc = −ζpiQijpj/2

with β, κ and ζ positive constants. Show that if a and α are chosen negative enough
to cause polar and nematic ordering simultaneously, then in any uniform state for which
Qij = 2λ(n̂in̂j − δij/2) with λ > 0, and p = pp̂, equilibrium requires p̂ = ±n̂ and
p2 = −(a− ζλ)/b.

(h) Discuss briefly whether half-integer defects can arise in this mixed material.
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3 Answer all parts of the question.

Consider a one-dimensional manifold in a two-dimensional Euclidean space, para-
metrised in terms of Cartesian coordinates

r(u) = [x(u), y(u)] 0 6 u 6 1.

(a) (i) Show that the metric

g =
∂r

∂u
· ∂r
∂u

and the arc-length

S(u) =

∫ u

0

√
g(u′) du′

are invariant under the group of isometries r → a + Rr where a is a constant vector and
R is a constant orthogonal matrix.

(ii) Express the Frenet-Serret equations for the tangent vector

t =
∂r

∂s
=

1√
g

∂r

∂u

and the unit normal n as a matrix equation. Explain why this matrix must be
antisymmetric.

(iii) Show that the non-zero element of the matrix (i.e. the curvature) is invariant
under isometries.

(b) Now consider a moving manifold, a diffeomorphism parametrised by time t > 0,

r = r(u, t)

with a velocity ∂tr. Resolve the velocity in the local frame as

∂tr(u, t) = Un +W t.

(i) Show that compatibility with the Frenet-Serret equations implies for the temporal
rates of change, at constant u, of the frame

∂t

(
t
n

)
=

(
0 ∂sU + kW

−∂sU − kW 0

)(
t
n

)

and of the invariants

∂tg = 2g(∂sW − kU)

∂tk = (∂2s + k2)U + ∂skW .

[QUESTION CONTINUES ON THE NEXT PAGE]
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(ii) Hence find an expression for the temporal rate of change of the arc-length.

(c) Assume the one-dimensional manifold is the centerline of a slender rod and is
inextensible, i.e. ∂tg = 0.

(i) Write down the equations for the balance of cross-sectional forces F and moments
M in the presence of forces f and moments m per unit length.

(ii) Consider a force per unit length arising from fluid friction and activity

f = −γ · ∂tr + FA

where γ is a constant friction tensor and show that force balance implies

W = t · µ(∂sF + fA)

U = n · µ(∂sF + fA)

where µ is the inverse of the friction tensor γ.

(iii) Resolve the force into a tension F‖ and a perpendicular force F⊥, F = F‖t+F⊥n,
and likewise µ = µ‖tt + µ⊥nn, to obtain the invariant forms of the velocities

W = µ‖(∂sF‖ − kF⊥ + fA‖ )

U = µ⊥(∂sF⊥ + kF‖ + fA⊥ )

where fA = fA‖ t + fA⊥n.

Part III, Paper 344 [TURN OVER]



6

4 Answer all parts of the question.

(a) A variable f(t) obeys the Langevin equation

ḟ = −αf + cΛf (t), (1)

where α and c are constants, and Λf (t) is unit Gaussian white noise such that

〈Λf (t)Λf (t′)〉 = δ(t − t′). Confirm the solution f(t) = c
∫ t
−∞ Λf (s)e−α(t−s)ds and hence,

or otherwise, show that
〈f(t)f(t′)〉 = f20 exp

(
−α|t− t′|

)

with f20 = c2/(2α).

(b) An overdamped Brownian particle of mobility M̃ moves in a one-dimensional
potential V . Its co-ordinate x(t) obeys the Langevin equation

ẋ = −M̃V ′(x) + (M̃C2)1/2Λx(t)

where Λx(t) is another unit white noise, V ′ ≡ dV/dx, and C is a constant. For a system
at equilibrium at temperature T , what should be the value of C? Explain your answer.

(c) A simple model of self-propulsion in one dimension consists of a Brownian
particle with M̃ = 1 and V = 0, and an additional driving force f :

ẋ = f(t) + CΛx(t). (2)

The driving force f obeys Eq.(1), and there is no correlation between Λf and Λx. Find
R(t, t′) = 〈(x(t)− x(t′))2〉 and comment on its limiting behaviour for large time intervals,
|t− t′| � 1. You may use without proof the result

∫ y

0

∫ y

0
e−|s−s

′| ds ds′ = 2
(
y − 1 + e−y

)
.

(d) Now consider a particle in a smooth potential V , with self-propulsion:

ẋ = −V ′(x) + f(t) + CΛx(t). (3)

Let PF [f, x] be the probability density for the trajectory [f(t), x(t)], and similarly PB[f, x]
for the corresponding time-reversed trajectory. For a time-interval (0, T ), show that

log
PF [f, x]

PB[f, x]
= ∆U [f, x] +

2

C2

∫ T

0
ẋ(t)f(x(t)) dt (4)

where ∆U [f, x] is a quantity that you will specify. (It may help to note that, by the usual
law of conditional probabilities, P[f, x] = P[f ]P[x|f ].)

(e) Assume that V is everywhere positive. Give the physical interpretation of
the three terms that appear in Eq.(4). How do their average values behave for large
T ? Without additional derivation, describe the expected qualitative behaviour of their
probability distributions, at large T .
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