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Consider the ODE y′ = f(y), y(0) = y0, and set

g(y) =
∂f(y)

∂y
f(y).

We consider the two-step method
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where yn ≈ y(nh).

a. Determine the order of the method.

b. Is the method A-stable?

2

The ODE system y′ = f(t,y), y(0) = y0, is solved by a three-stage Runge–Kutta
method with the Butcher tableau
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a. Determine its order, motivating carefully your answer.

b. Is the method algebraically stable?
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The linear Schrödinger equation

i
∂u

∂t
= −∂2u

∂x2
+ V (x)u, −1 6 x 6 1, t > 0,

is given with periodic boundary conditions and an initial condition for t = 0. The potential
V is real.

a. Prove that the Euclidean norm ‖u( · , t)‖ is constant in t.

b. Suppose that the second space derivative is discretised with second-order central
differences, resulting in the semidiscretized scheme

u′ = i(A− V )u,

where V is an (2M) × (2M) diagonal matrix and Vk,k = V ((k − M)/M), k =
1, . . . , 2M . Write the matrix A explicitly and prove that ‖u(t)‖ is constant in t.

c. Propose an efficient implementation of Strang’s splitting for the semidiscretized
scheme and describe a method for its solution in O(M log2M) operations.

4

The equation
∂u

∂t
=
∂2u

∂x2
+ α

∂u

∂x
,

where α ∈ R, is solved by the semidiscretized scheme

u′m =
1

(∆x)2
(um−1 − 2um + um+1) +

α

2∆x
(um+1 − um−1).

a. The equation is given for −1 6 x 6 1 with zero boundary conditions. Is the scheme
stable?

b. The equation is given as a Cauchy problem, i.e. for x ∈ R. Is the scheme stable?

c. The semidiscretized scheme is solved using the forward Euler method. Write down
the scheme. Assuming a Cauchy problem, what is the range of ∆t (which may
depend on ∆x) that ensures stability?

Part III, Paper 341 [TURN OVER]



4

5

We consider the two-point boundary-value problem Lu = f , where

L[u] = −(1 + x2)
d2u

dx2
− 2x

du

dx
+ x2u

given in [0, 1] with zero Dirichlet boundary conditions.

a. Specifying in which function space should the solution reside, prove that L is positive
definite and determinate the underlying variational problem.

b. The problem is solved with the Ritz method, using hat functions. Letting f(x) ≡ 1,
determine the underlying system of algebraic linear equations for the coefficients.
(No need to evaluate the integrals.)

6

Write an essay on the concept of stability in the numerical solution of time-
dependent differential equations.

You should explain the rationale behind the definitions, quote relevant theorems,
describe techniques to determine stability, their scope and limitations, and accompany
your presentation with concrete examples.
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