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1 The function g(θ;λ) is defined by

g(θ;λ) =

∫

C

1

(z − z0)(z2 − 1)
1
2

exp
(
iλ
(

(z2 − 1)
1
2 θ − z

))
dz ,

where θ, z0 and λ are real and positive, and the contour C goes from −∞ to ∞ passing
above the three singularities of the integrand. Take the branch cuts for (z2 − 1)

1
2 to be

lines drawn towards =(z) = −∞ from the points z = ±1.

(a) Obtain the leading-order asymptotic behaviour of g(θ;λ) as λ→∞ on the assumption
that 0 < θ < 1 and z0 > 1; be careful to discuss all cases. Determine the limiting
value of g(θ;λ) as θ → 1.

(b) Comment, with brief justification, on the value of g(θ;λ) when θ > 1.

(c) If θ = 1, outline, without performing a detailed calculation, how you would obtain a
leading-order approximation of g(θ;λ) as λ→∞.
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2

(a) For 0 6 x 6 1, the function y(x; ε) satisfies the differential equation

ε2
d2y

dx2
= y −

∣∣x− 1
2

∣∣ ,

where 0 < ε� 1, together with the boundary conditions

y(0; ε) = y(1; ε) = 1
2 .

Find an asymptotic solution of the composite form

y(x; ε) ∼ y0(x) + εy1(ξ) ,

where ξ =
(
x− 1

2

)
/ε. What is the order of smoothness of this composite asymptotic

expansion?

(b) For 0 6 x 6 1, the function z(x; ε) satisfies the differential equation

σε2
d2z

dx2
+ 4x ln2 x

dz

dx
− 4σ z = 0 ,

where 0 < ε� 1 and σ is a constant, together with the boundary conditions

z(0; ε) = z(1; ε) = 1 .

(i) If σ = −1, determine the leading-order solution for z in inner and outer regions
that are to be identified.

Hint: Depending on your approach, you may find it helpful to know that the
general solution to

µ
d2Y

dξ2
+ 4ξ ln2 ξ

dY

dξ
= 0 ,

where µ is a constant, is

Y = c+ d

∫ ξ

0
exp

(
−ξ

2

µ

(
2 ln2 ξ − 2 ln ξ + 1

))
dξ ,

where c and d are constants.

(ii) If σ = 1, outline how the form of the leading-order solution changes, and sketch
the solution.
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3 For t > 0, the function θ(x, t) satisfies the partial differential equation

∂2θ

∂t2
− k2 ∂

2θ

∂x2
− θ = ε2θ3 ,

where k is a positive constant and ε � 1 is a small positive constant. At t = 0, the
function θ satisfies the initial conditions

θ(x, 0) = cosx ,
∂θ

∂t
(x, 0) = 0 .

Assume that for k > kc(ε), this system admits time periodic solutions with a real
frequency and phase. By seeking an asymptotic solution of the form

θ = θ0 + εθ1 + ε2θ2 + . . . ,

find kc(ε) correct to, and including, terms that are O(ε2).

Hint: before scaling time, it may be helpful to note the form of the linear solution when
0 6 k − kc(0)� 1.

Comment: the following trigonometric relation may prove useful

4 cos3ξ = 3 cos ξ + cos 3ξ .

END OF PAPER

Part III, Paper 336


