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1 The function g(@; \) is defined by

g(0;A) = /C o 20)222 - 1)% exp (i)\ ((22 - 1)%9 - z)) dz

where 0, zg and A are real and positive, and the contour C goes from —oo to oo passing
above the three singularities of the integrand. Take the branch cuts for (22 — 1)2 to be
lines drawn towards (z) = —oo from the points z = 1.

(a) Obtain the leading-order asymptotic behaviour of g(6; \) as A — oo on the assumption
that 0 < 6 < 1 and 29 > 1; be careful to discuss all cases. Determine the limiting
value of g(6; \) as 6 — 1.

(b) Comment, with brief justification, on the value of g(¢; A) when 6 > 1.

(c) If 8 = 1, outline, without performing a detailed calculation, how you would obtain a
leading-order approximation of g(6; \) as A — oo.
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(a)

For 0 < z < 1, the function y(x;¢) satisfies the differential equation

d2
20y

deZy—‘l'—%‘,

where 0 < € < 1, together with the boundary conditions
y(0se) = y(Lie) = 3.
Find an asymptotic solution of the composite form

y(@;e) ~ yo(x) +en(§),
where £ = (x — %) /e. What is the order of smoothness of this composite asymptotic
expansion?
For 0 < z < 1, the function z(z;¢) satisfies the differential equation

d’z dz

2 2
— +4xl — —402=0
0’de2+ xn:cdx oz R

where 0 < € < 1 and o is a constant, together with the boundary conditions
2(0;e) = z(1;¢) = 1.

(i) If o = —1, determine the leading-order solution for z in inner and outer regions
that are to be identified.

Hint: Depending on your approach, you may find it helpful to know that the
general solution to

d?Y

Mgz

dYy
46’ — =
+§nfd§ 0,

where 1 is a constant, is

3 52
Y:c+d/ exp <_M (21n2§—21n§+1)> dé
0

where ¢ and d are constants.

(ii) If o = 1, outline how the form of the leading-order solution changes, and sketch
the solution.
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3 For ¢ > 0, the function 0(x,t) satisfies the partial differential equation
0%0 020
v k27 —0= 293
ot? D2 v

where k is a positive constant and ¢ < 1 is a small positive constant. At ¢ = 0, the
function 0 satisfies the initial conditions

0(z,0) = cosz, (;z(x,O)zo.

Assume that for k > k.(¢), this system admits time periodic solutions with a real
frequency and phase. By seeking an asymptotic solution of the form

0=0p+¢c0; +e%0,+ ...,
find k.(g) correct to, and including, terms that are O(g?).

Hint: before scaling time, it may be helpful to note the form of the linear solution when
0<k—ke(0)<1.

Comment: the following trigonometric relation may prove useful

4cos®¢ = 3cosé + cos 3.
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