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1

For an unbounded, inviscid, stratified fluid in a rotating reference frame, consider
small amplitude departures from a basic state with velocity u = Λx̂ and buoyancy
b = N2z, where ̂ is the unit vector in the y direction and Λ and N are constant. You
may assume that the perturbations are independent of y and that the Coriolis parameter,
f , is constant.

(i) Show that the frequency, ω, of small amplitude sinusoidal perturbations satisfies

ω2 = ff̃
m2

k2 +m2
+ g̃

k2

k2 +m2
,

where f is the Coriolis parameter, k and m are the wavenumbers in the x and z
directions, and f̃ and g̃ are functions that should be determined.

Discuss how the dispersion relation varies as Λ changes and obtain a condition
for exponentially growing perturbations. Write down a necessary condition for
instability, expressed in terms of the Ertel potential vorticity of the basic state.

(ii) Now, consider a basic state with buoyancy of the form B = M2x + N2z, where
M and N are constant. The velocity of the basic state is a superposition of the
velocity in the part above (Λx̂) and a vertical shear in thermal wind balance with
the horizontal buoyancy gradient. Derive the dispersion relation for small amplitude
sinusoidal perturbations that are independent of y and with velocity aligned with
surfaces of constant buoyancy (such that the perturbation buoyancy vanishes).

Obtain a condition for exponentially growing perturbations and express this in term
of the Ertel potential vorticity of the basic state. Discuss the role of the horizontal
buoyancy gradient (M2) on the condition for instability. Compare this result with
part (i) and discuss the connection in terms of the component of the basic state
vorticity perpendicular to constant buoyancy surfaces.
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2

A thin, flat sheet of ice floats on the surface of the ocean (z = 0). At a sufficiently
large height, the wind in the atmosphere is in geostrophic balance and has velocity Ua.
At a sufficiently large depth, the ocean is in geostrophic balance and has velocity Uo. Let
the constant kinematic viscosity of the atmosphere and ocean be νa and νo, respectively,
and assume that the density of the atmosphere, ρa, and the density of the ocean, ρo, are
constant. Find the velocity of the ice when the system is in steady state. You may neglect
the thickness of the ice for the purpose of applying boundary conditions. Clearly state
any assumptions that you make. Discuss the solution in the limit when νa → 0.

The atmospheric Ekman transport is defined as the vertically-integrated steady-
state wind,

ua =

∫ ∞

0
(ua(z)−Ua) dz. (1)

In conditions when Uo is aligned with Ua, find the orientation of the atmospheric Ekman
transport and the orientation of the stress exerted by the wind on the ice, relative to the
geostrophic flow.
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3 Quasi-geostrophic flow on a β-plane with Coriolis parameter f0 + βy and constant
buoyancy frequency N evolves according to the quasi-geostrophic potential vorticity
equation

Dg

Dt

{
ψxx + ψyy +

f20
N2

ψzz

}
+ βψx = 0

where ψ is the quasi-geostrophic stream function and Dg/Dt denotes the rate of change
following the geostrophic flow. The leading-order approximation to the vertical velocity
is given by

w = −Dg

Dt

{
f0ψz

N2

}
.

Consider flow in an ocean, unbounded in x and y, with, in its resting state, a free
surface at z = 0 and a rigid lower boundary at z = −H. In the disturbed state the
free surface is z = η(x, y, t) and the velocity is non-zero. Assume that the pressure is
constant above the free surface, and that the free surface displacement η is small enough
that linearisation applies.

(i) Show that the appropriate boundary condition at z = 0 is:

Dgψz

Dt
+
N2

g

Dgψ

Dt
= 0.

(ii) Show that the quasi-geostrophic potential vorticity equation, linearised about the
resting state, has a solution for ψ of the form:

ψ(x, y, z, t) = φ(x, y, t)P (z)

provided that φ(x, y, t) satisfies a certain partial differential equation and P (z)
satisfies the eigenvalue relation:

d2P

dz2
= −N

2

c2
P. (1)

For given c clearly state the partial differential equation satisfied by φ.

(iii) What boundary conditions apply to P (z) at z = −H and z = 0? Hence obtain an
equation for c (which you will not be able to solve analytically). (You may assume
c to be positive.)

(iv) In the case where N2H/g is small obtain leading-order expressions for the possible
values of c, i.e. cn, cn = 0, 1, 2, . . . , with c0 > c1 > c2 . . . . [Hints: You may
find it useful to consider the variable NH/c rather than c and you may also find a
graphical approach useful to locate solutions.] The eigenfunction Pn(z) satisfies (1)
with c = cn. Give the leading-order expressions for P0(z) and P1(z).

[QUESTION CONTINUES ON THE NEXT PAGE]
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Now consider the effect of a forcing term F (x, y, z)H(t), where F (x, y, z) =∑∞
n=0 Fn(x, y)Pn(z), on the right-hand side of the quasi-geostrophic potential vorticity

equation. H(t) is the Heaviside step function. For each z the function F (x, y, z) is non-
zero only in some finite regionR (which includes the origin) of the (x, y)-plane, with length
scale Lh.

The corresponding solution of the quasi-geostrophic potential vorticity equation may
be written as

ψ(x, y, z, t) =

∞∑

n=0

φn(x, y, t)Pn(z).

(v) Derive the partial differential equation satisfied by each φn and then the simplified
‘long-wave’ form of the equation that applies if Lh � cn/f for each n = 0, 1, 2, . . . .

(vi) Give a qualitative description of the solution of the simplified equation, for a forcing
of the type specified above. What will be the vertical structure of ψ observed at
two points X1 and X2, which are respectively a large distance LX to the west and
to the east of the forcing region R, for times t such that c0t > LX > c1t?

(vii) Suppose in particular that F (x, y, z) = G(x, y) 6= 0 for −D < z < 0 and
F (x, y, z) = 0 for −H < z < −D. What is the steady-state solution for ψ? [Hint:
Consider the steady-state form of the quasi-geostrophic potential vorticity equation
without writing ψ as a series.] Give a brief description of the evolution towards this
steady state.
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4 Consider the Boussinesq equations for small-amplitude disturbances to a basic state
with constant velocity U > 0 in the x direction and with constant buoyancy frequency N :

u′t + Uu′x = −ρ0−1∇p′ + b′ẑ (1)

∇ · u′ = 0 (2)

b′t + Ub′x + w′N2 = 0. (3)

Quantities vary only in x and z. ẑ is the unit vector in the upward vertical direction and
u′ = (u′, w′).

(i) Consider disturbances with sinusoidal variation in x, z and t of the form
ei(kx+mz−ωt). Derive the dispersion relation giving the frequency ω in terms of the
wavenumber (k,m). (Note that the dispersion relation has two branches.) Identify
clearly the conditions on k and m that correspond to upward or downward group
propagation.

(ii) Now consider flow above a sinusoidal boundary defined by z = h0 cos kx where h0 is
small. Assume that the effect of the boundary is to provide a forcing at frequency
ω = 0. What is the linearised boundary condition on w′ at z = 0? Under what
conditions is there upward propagation of waves away from the boundary? Sketch
the possible configurations for the lines of constant phase in this case.

(iii) The force on the x-averaged flow due to the waves is given by −∂(u′w′)/∂z. For
conditions where there is wave propagation, calculate the momentum flux u′w′ in
terms of h0, k and U . If the waves dissipate in some layer a large distance above
the boundary what will be the corresponding force (integrated over the dissipation
layer) exerted on the x-averaged flow?

(iv) Explain the overall momentum balance in the flow.

(v) By considering ∂(b′ζ ′)/∂t, where ζ ′ = u′z − w′x derive an x-averaged wave-activity
conservation relation in which −u′w′ appears as a vertical flux. Give the corres-
ponding expression for the wave activity density.

(vi) Use the wave-activity conservation relation to explain the relation between the
growth or decay of waves and the force exerted on the x-averaged flow. Assuming
that growing waves imply a force with the same sign as you have deduced in (iii)
above, what do you deduce about the sign of the wave activity? How would your
answer to (iii) and your answer here change if U < 0? (Detailed calculation is not
required.)

END OF PAPER
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