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A fluid of viscosity µ1 and density ρ1 is injected upwards into a two-dimensional
porous medium of porosity φ and uniform permeability k that is aligned vertically and
that is saturated in a second fluid of viscosity µ2 and density ρ2. The initial interface
between the two fluids is planar, and the porous medium is thin, so that at all times the
flow is principally two-dimensional and in the plane of the porous medium. If the fluid
is injected with constant velocity U , show that the interface is unstable to perturbations
with growth rate

σ =
αU

φ

{
M +

(ρ2 − ρ1)kg
(µ1 + µ2)U

}
(1)

where M = (µ2 − µ1)/(µ2 + µ1) is the mobility ratio, α is the horizontal wavenumber of
the perturbations and g is the gravitational acceleration.

If the two fluids are immiscible, with interfacial surface tension γ, find the most
unstable wavenumber as a function of the mobility ratio M , the capillary number
Ca = µ2U/γ and a ratio between the characteristic buoyancy velocity and the imposed
velocity U . Derive an expression for the most unstable wavenumber and plot the growth
curve, σ(α), for the cases ρ2 = ρ1, ρ2 > ρ1 and ρ2 < ρ1. Finally, find a condition on the
density, ρ2, for which the interface is neutrally stable (σ = 0) and comment on your result,
in particular in the limit as U → 0.
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(a) Water of temperature Tm occupying z > 0 is brought into contact with a
cold substrate of initial temperature Ts < Tm and thermal conductivity ks occupying
z < 0 to form a layer of ice of conductivity k occupying 0 < z < h(t), where Tm is
the freezing temperature of water. Determine h(t) up to a factor λ, an implicit function
of S = L/cp(Tm − Ts), where L is the latent heat of fusion and cp is the specific heat
capacity, which may be assumed to be independent of material. Determine also the contact
temperature T0 = T (z = 0) as a function of λ. Simplify your results in the asymptotic
limits (i) ks � k and (ii) ks � k, and explain your findings physically. In particular, in
case (ii), find an explicit expression for h(t) in terms of the parameters of the system.

(b) A layer of ice sits below a layer of salt solution containing a total mass of salt S
per unit area, all contained in a narrow cell. Above the salt solution is an essentially
infinite layer of fresh water. The system is pulled at constant speed V past a heat
exchanger that imposes a fixed temperature Tc at its location while the cell sits in an
environment of temperature T∞ > Tm, where Tm is the freezing temperature of pure
water. Assume that the heat flux from the environment to the cell is directly proportional
to the temperature difference between the environment and the interior of the cell, with
constant of proportionality F .

Show that the system can achieve a steady state in the frame of reference of the heat
exchanger provided Tc < Tm −mSV/ρD, where m is the slope of the liquidus (assumed
linear), ρ is the density of the salt solution (assumed undefended of salt concentration),
and D is the diffusivity of salt in solution. Determine expressions for the temperature field
in each region and explain how the steady height of the ice front above the heat exchanger
could be calculated from these expressions.

Determine the conditions under which constitutional supercooling occurs in the
liquid region. In particular, sketch the critical solidification rate V as a function of S in
the two limits F/k � V 2/κ2 and F/k � V 2/κ2, where k is thermal conductivity and κ
is thermal diffusivity.
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A two-dimensional ice sheet of thickness H(x, t), where x is horizontal distance and
t is time, erodes the rock over which it flows to form a lubricating layer of till of thickness
h(x, t). You may assume that the ice and till both flow as Newtonian fluids, with dynamic
viscosities µ and λµ respectively, λ� 1, and the same densities ρ. You may also assume
from the outset that h� H. The rate of erosion of the rock is given by Eτ0, where τ0 is
the viscous shear stress exerted on the rock.

Starting from the equations for thin-film flow, give a careful derivation of the leading-
order equations, in the limit h/H � 1,

∂H

∂t
=
ρg

3µ

∂

∂x

[(
1 +

3h

λH

)
H3∂H

∂x

]
, (1)

∂h

∂t
=

ρg

2λµ

∂

∂x

[
Hh2

∂H

∂x

]
− ρgEH ∂H

∂x
. (2)

Consider the steady state that arises if ice is supplied with volume flux q0 per unit
cross-stream width at x = 0 and is removed at rate q0 at x = L (for example by calving at
a continental margin). Use a scaling analysis to show that h ∼ (λµEL)1/2, independent
of q0, and that the ice is essentially unlubricated if

E ≡ µE2Lρg

λ2q0
� 1.

Solve the steady equations for a well-lubricated ice sheet (E � 1) to show that
F = H/H0 satisfies

3F 4 − 2F 6 = 1− ξ,
where H0 = H(0) and ξ = x/L, and determine the value of H0 in terms of the parameters
of the system. Determine the thickness h(x) of the till in terms of F , and draw sketches
of H(x) and h(x).
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