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1 Hydrodynamic Stability

You are given that rotating Rayleigh-Benard convection in an infinite layer of
Boussinesq fluid is governed by the following dimensionless equations:

∂u

∂t
+ λẑ× u + u · ∇u +∇p = σRa θ ẑ + σ∇2u,

∇ · u = 0,

∂θ

∂t
+ u · ∇θ = ∇2θ

with the velocity u satisfying stress-free boundary conditions at z = 0, 1 and the
temperature field θ = −1 on z = 1 and θ = 0 on z = 0. Ra is the Rayleigh number,
σ is the Prandtl number and λ is a non-dimensional measure of the rotation rate.

(a) Show that u0 = 0 and θ0 = −z give a basic conductive state.

(b) Write down the linearized Boussinesq equations for small perturbations of (u0, θ0)
together with the relevant boundary conditions.

(c) By taking ẑ · ∇× and ẑ · ∇ × ∇× of the linearized momentum equation, derive the
equations (

∂

∂t
− σ∇2

)
ω − λ∂W

∂z
= 0,

(
∂

∂t
− σ∇2

)
∇2W + λ

∂ω

∂z
= σ Ra∇2

Hθ
′

where W := u · ẑ, ω := ẑ · ∇ × u and θ′ is the temperature perturbation to θ0. Here
∇2
H := ∇2−∂2/∂z2 and you can use the identity ẑ·∇×∇×A = ẑ·∇(∇·A)−∇2(A·ẑ).

(d) Now consider normal modes of the form [W,ω, θ′] = [Ŵ (z), ω̂(z), θ̂(z)]eµt+ikx. By
eliminating ω̂ and θ̂, deduce that

[
(µ− D̂2)(µ− σD̂2)2D̂2 + λ2D2(µ− D̂2) + σRak2(µ− σD̂2)

]
Ŵ (z) = 0

where D := ∂/∂z and D̂2 := D2 − k2.

(e) Assuming that linear instability first appears for µ = 0, find the threshold Rayleigh
number as a function of λ, σ and k. Is the effect of rotation stabilizing or destabilizing?

(f) Find an expression for the optimal k when λ/σ � 1.

(g) Slightly above the stability point Rac, the evolution of A(t), the amplitude of the
convection, is given by the equation

dA

dt
= (Ra−Rac)A−A3.

Illustrate on a graph of A(t) versus t how the solutions behave as a function of the
initial condition A(0) (be careful to indicate the stability of any steady solutions).
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2 Hydrodynamic Stability

(i) Consider the stability of the 2-dimensional inviscid parallel shear flow

u = U(y)ex − 1 6 y 6 1.

(a) If ψ = φ(y)eik(x−ct) is the stream function of the perturbation velocity, derive
Rayleigh’s stability equation.

(b) State the boundary conditions on φ for rigid walls, located at y = ±1 and
show that the boundary condition for a free, constant pressure surface is
(U − c)φ′ − U ′φ = 0.

(c) For the case U(y) = y, show that for discrete modes

c2 =
(k tanh k − 1)(k − tanh k)

k2 tanh k

for a free surface condition at y = ±1 and hence deduce that the flow is unstable
for k < kc where the condition defining kc should be given.

(ii) Now consider the system

∂2u

∂t2
+ f(u) =

1

R

∂2u

∂z2
for 0 < z < π

and u = 0 at z = 0, π where f(0) = 0, f ′(0) < 0, f ′′(0) = 0 and f ′′′(0) > 0.

(a) Show that the solution u = 0 is linearly stable if R 6 Rc = −1/f ′(0).

(b) Consider the weakly nonlinear problem when ε2 := R − Rc � 1. Assuming
u = εA(T ) sin z + ε2u2(z, T ) + ε3u3(z, T ) + . . ., show that u2 = 0 and that

d2A

dT 2
=

1

f ′(0)2
A− 1

8
f ′′′(0)A3

where T := εt and
∫ π

0
uj(z, T ) sin z dz = 0 for j = 2, 3, . . .

to ensure A is uniquely defined.
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3 Hydrodynamic Stability

Consider the 2D linear system

d

dt

[
x
y

]
= L

[
x
y

]
:=

[
−ε −(1 + β)

(1− β) −ε

] [
x
y

]

where β < 1 and ε are positive constants.

(a) Find the condition on β and ε for the origin to be linearly stable.

(b) Show that L is non-normal for β 6= 0 but that growth in the energy E(t) := x(t)2+y(t)2

is only possible if β > ε.

(c) When ε = 0, show that

[
x(t)
y(t)

]
= A(t)

[
x(0)
y(0)

]
:=

[
cos Γt −(1 + β)/Γ sin Γt

Γ/(1 + β) sin Γt cos Γt

] [
x(0)
y(0)

]

where Γ :=
√

1− β2.

(d) Again for ε = 0, show that the maximum energy growth, E(t)/E(0), after a time t is
the largest solution, λ, of the equation

(λ− 1)2 =
4β2

1− β2 λ sin2 Γt.

Hence deduce when the growth is maximized, find the optimal initial conditions for
this and compute the maximum growth possible.

(e) Relate your results from (d) to the solution trajectories around the origin.

END OF PAPER
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