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1 Slow Viscous Flow
Two infinite rigid cylinders of radius a are parallel and touching along the z-axis. A

small amount of viscous fluid occupies the cusp-shaped region on one side of the cylinders,
and the wetting properties of the fluid are such that the meniscus is tangent to the cylinders
at the contact points, as shown in the diagram. The width of fluid w(z, t) satisfies w ≪ a
and varies slowly in the axial direction z.

Making appropriate geometrical approximations, show that the cross-sectional area
of fluid is proportional to w3 and that the curvature of the semicircular meniscus is
proportional to w−2. Find the constants of proportionality.

Gravity is negligible and the fluid is drawn (in both directions) along the cusp
between the cylinders by the variation in the capillary pressure. By integrating the flux
over the cross-section, derive the equation

∂w3

∂t
=

γ

7µa

∂

∂z

(
w4 ∂w

∂z

)

for the evolution of w(z, t).

Obtain a similarity solution for the spread of a small fixed volume V of fluid placed
in the cusp at z = 0 and t = 0. In particular, show that the location of one tip of the flow
is at

zN (t) =

(
8V a

π

)1/4 ( 8γt

21µa

)3/8

.

Suppose that gravity is no longer negligible and that the cylinders are now placed,
still touching, with their axes vertical in a large bath of fluid whose free surface is at z = 0.
Find w(z) for large z after the flow has come to rest.
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2 Slow Viscous Flow
A small spherical bubble of radius a is immersed in fluid of viscosity µ. The

fluid contains dissolved surfactant with volumetric concentration Γ(x), which has a weak
uniform far-field gradient G = (∇Γ)∞. The surfactant is also adsorbed onto the surface
of the bubble at a rate given by

−k(C − bΓ),

where C is the surface concentration of surfactant sitting on the interface, Γ is the adjacent
bulk concentration, and k and b are constants. Explain with a sketch why you would expect
the bubble to move. [Hint: The motion is called chemophoresis.]

The diffusivity of surfactant in the bulk fluid is D. Write down the governing
transport equation for Γ and give a physical interpretation of the boundary condition

Dn·∇Γ = −k(C − bΓ), (r = a),

where n is the unit normal out of the bubble.

Neglecting advection of the fluid, what does the symmetry of the problem suggest
is the form of Γ. Assuming that kab� D and that C has a similar magnitude to bΓ (both
on average and in variation), show that Γ = 3

2aG·n + Γ0 on r = a, where Γ0 is a constant.

The surface-tension coefficient on the interface is given by γ(C) = γ0− γ1C ′, where
γ0 and γ1 are positive constants, C ′ = C − C0 and C0 = bΓ0. Write down the general
stress boundary condition for a fluid–fluid interface with surface tension γ and curvature
κ. Assume that C ′ = AG·n for some constant A and find the resultant fluid stress σ·n
at r = a.

Verify that the net force exerted by the bubble on the fluid is zero, and explain
briefly why this should be the case. Explain why the flow induced by the Marangoni
stress can be determined from Papkovich–Neuber potentials of the form

χ = βa3 G·∇ 1

r
, Φ = 0 ,

where β is a constant. On r = a the stress corresponding to χ is

σ·n =
3β

a

{
G− 3(G·n)n

}
.

Find β and show that the fluid velocity u is consistent with uniform translation of the
bubble at a velocity U = γ1AG/3µ.

In a steady state the usual transport equation for the surface concentration C
simplifies to

∇s·(Cus) = Ds∇2
sC − k(C − bΓ) ,

where us = u − U. Assume that |C ′| � C0 and simplify the equation further. Hence
determine the constant A in the earlier assumption C ′ = AG·n.

[You may use the results ∇2
sn = −2n/a2 and ∇s·(I− nn) = −2n/a.]

For each of the parameters k, C0 and Ds, explain the physical mechanism by which
U is increased or decreased by increasing that parameter.
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3 Slow Viscous Flow
(a) A rigid cylinder of radius a and length L is surrounded by viscous fluid bounded

by a rigid plane z = 0. The axis of the cylinder is given by x = 0, 0 6 y 6 L and
z = a(1 + 1

2ε), where ε� 1.

Use lubrication theory to show that the components Axx and Ayy of the resistance
matrix associated with translations of the cylinder in the x and y directions, respectively,
are approximated to leading order by

Axx = 4πε−1/2µL and Ayy = 2πε−1/2µL .

[
You may assume that if In ≡

∫ ∞

−∞

dξ

(1 + ξ2)n
then I1 = π, I2 =

π

2
and I3 =

3π

8
.
]

(b) Now consider a rigid torus of cross-sectional radius a and centreline given by
x2 + y2 = R2, z = a(1 + 1

2ε), where R � a. Use the answers to part (a) to calculate the
leading-order approximations to the components Axx and Dzz of the resistance matrix for
the torus.

(c) Now suppose that the fluid is confined between rigid planes at z = 0 and
z = a(2 + ε) and consider translation of the torus from part (b) with velocity (−U, 0, 0).
Assume, to begin with, that the flux leaking through the narrow gaps near r = R is
negligible.

Working in the frame of the torus, find the Hele-Shaw flows and the pressure
distributions in r > R and in r < R. [For this calculation, you should ignore the details
for r −R = O(a) and approximate the second plane to be at z = 2a.]

Sketch the pressure distribution in plan view, showing regions of high and low
pressure.

Deduce that if a � R � aε−1/2 then the resistance to translation of the torus
is approximately twice the answer to part (b), but if aε−1/2 � R � aε−5/2 then the
resistance is approximately

12πµUR2/a .

Use scaling arguments to explain the significance of the condition R� aε−5/2.
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