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Define the space of test functions D(R) and the space of distributions D/(R),
specifying the notion of convergence on each.

Show that a linear form u : D(R) — C defines an element of D'(R) if and only if
(u, pm) — 0 for each sequence of test functions {y,, }m>1 that converge to zero in D(R).

For h € R and u € D'(R) define the translation 7,u and the derivative u/. Show
that both define elements of D'(R).

Show that
T_pU — U

in D'(R).

v = lim
h—0

For —1 < A\ < 0 define the locally integrable functions on R by

A\ 2, x>0, 1 logz, x>0,
ry = o Ly =
Tlo, z<o. 70, z<o.

Show that for ¢ € D(R)
(@Yoo} = [ Tota) = e(0]r* " o

Derive a similar expression for ((logz ), ¢).

Find the order of (27 )/, justifying your answer.

Part III, Paper 327



ESE UNIVERSITY OF
4P CAMBRIDGE 3

Let X € R™ be open. What does it mean for a function ® = ®(x, ) to be a phase
function? Define the space of symbols Sym(X, R*; N) and show that:

(i) If @ € Sym(X,R¥; N) then DDja € Sym(X,R¥; N —|4]).
(ii) If a; € Sym(X,R¥; ;) for i = 1,2 then ajaz € Sym(X,R¥; Ny + No).

For ® a phase function and a € Sym(X, R¥; N) define

Ig(a) = /eiq)(x’e)a(:c,ﬁ) dé

in terms of a linear map from D(X) to C. You may assume Ig(a) € D'(X). Define the
singular support of an element of D'(X) and show that

singsupp Ip(a) C {x € X : Vo®(x,0) = 0 for some # € RF\ {0}}.

Let (z,k) € R? x R?. Define u € D'(R3) by the oscillatory integral

1 eik-m

Using spherical polars (k1, k2, k3) = (r cos ¢ sin 6, rsin ¢ sin 6, r cos ) with volume element
dk = r?sin 0 dr df d¢, show that for x € R?\ {0} the distribution u can be identified with

the function

7T€_|x‘
T =

|z
Comment on this result.
Hint: You may use the fact that for A > 0

/ 7 sin(Ar) dr —
0

T -
1—|—7"2 26 .

Part 111, Paper 327 [TURN OVER]



% UNIVERSITY OF
¥ CAMBRIDGE 4

Define the Schwartz space of functions S(R"™) and the space of tempered distri-
butions S'(R™). Show that the Fourier transform defines a continuous isomorphism
F : S(R") — S(R™). Hence show that the Fourier transform extends to a continuous
isomorphism on the space of tempered distributions.

(a) For w € R, compute the Fourier transform in &’'(R) of the function

()
T > exp wa .

(b) For a real, invertible matrix A € GL(n) and ¢ € S(R") define the pull-
back (A*¢)(x) = p(Ax). Using a duality argument, show that this definition extends
to u € S'(R™) via

* o 1 —1\* n
(A u,@>—m<u,(A 1) g0> Vo € S(R™).

You may assume A*u € §'(R™).
(c) Show that for u € S'(R")

(A Y
) = et )

(d) Deduce that for a real, symmetric matrix A € GL(n)

{exp <;Aa: - xﬂm) . ’d(::()j)' exp (IZ sgn(A) — %(A“A : A)) 7

where sgn(A4) = > sgn&;, with {&} being the eigenvalues of A. You may assume
elementary results from linear algebra.
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