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Define the space of test functions D(R) and the space of distributions D′(R),
specifying the notion of convergence on each.

Show that a linear form u : D(R) → C defines an element of D′(R) if and only if
〈u, ϕm〉 → 0 for each sequence of test functions {ϕm}m>1 that converge to zero in D(R).

For h ∈ R and u ∈ D′(R) define the translation τhu and the derivative u′. Show
that both define elements of D′(R).

Show that

u′ = lim
h→0

τ−hu− u
h

in D′(R).

For −1 < λ < 0 define the locally integrable functions on R by

xλ+ =

{
xλ, x > 0,

0, x 6 0.
log x+ =

{
log x, x > 0,

0, x 6 0.

Show that for ϕ ∈ D(R)

〈
(xλ+)′, ϕ

〉
=

∫ ∞

0

[
ϕ(x)− ϕ(0)

]
λxλ−1 dx.

Derive a similar expression for 〈(log x+)′, ϕ〉.
Find the order of (xλ+)′, justifying your answer.
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Let X ⊂ Rn be open. What does it mean for a function Φ = Φ(x, θ) to be a phase
function? Define the space of symbols Sym(X,Rk;N) and show that:

(i) If a ∈ Sym(X,Rk;N) then Dα
xD

β
θ a ∈ Sym(X,Rk;N − |β|).

(ii) If ai ∈ Sym(X,Rk;Ni) for i = 1, 2 then a1a2 ∈ Sym(X,Rk;N1 +N2).

For Φ a phase function and a ∈ Sym(X,Rk;N) define

IΦ(a) =

∫
eiΦ(x,θ)a(x, θ) dθ

in terms of a linear map from D(X) to C. You may assume IΦ(a) ∈ D′(X). Define the
singular support of an element of D′(X) and show that

sing supp IΦ(a) ⊂ {x ∈ X : ∇θΦ(x, θ) = 0 for some θ ∈ Rk \ {0}}.

Let (x, k) ∈ R3 ×R3. Define u ∈ D′(R3) by the oscillatory integral

u(x) =
1

2π

∫
eik·x

1 + |k|2 dk.

Using spherical polars (k1, k2, k3) = (r cosφ sin θ, r sinφ sin θ, r cos θ) with volume element
dk = r2 sin θ dr dθ dφ, show that for x ∈ R3 \ {0} the distribution u can be identified with
the function

x 7→ πe−|x|

|x| .

Comment on this result.

Hint: You may use the fact that for λ > 0

∫ ∞

0

r sin(λr)

1 + r2
dr =

π

2
e−λ.
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Define the Schwartz space of functions S(Rn) and the space of tempered distri-
butions S ′(Rn). Show that the Fourier transform defines a continuous isomorphism
F : S(Rn) → S(Rn). Hence show that the Fourier transform extends to a continuous
isomorphism on the space of tempered distributions.

(a) For ω ∈ R, compute the Fourier transform in S ′(R) of the function

x 7→ exp

(
i

2
ωx2

)
.

(b) For a real, invertible matrix A ∈ GL(n) and ϕ ∈ S(Rn) define the pull-
back (A∗ϕ)(x) = ϕ(Ax). Using a duality argument, show that this definition extends
to u ∈ S ′(Rn) via

〈A∗u, ϕ〉 =
1

|det(A)|
〈
u, (A−1)∗ϕ

〉
∀ϕ ∈ S(Rn).

You may assume A∗u ∈ S ′(Rn).

(c) Show that for u ∈ S ′(Rn)

(A∗u)̂ =
((At)−1)∗û
|det(A)| .

(d) Deduce that for a real, symmetric matrix A ∈ GL(n)

[
exp

(
i

2
Ax · x

)]
(̂λ) =

√
(2π)n

|det(A)| exp

(
iπ

4
sgn(A)− i

2
(A−1λ · λ)

)
,

where sgn(A) =
∑n

i=1 sgn ξi, with {ξi} being the eigenvalues of A. You may assume
elementary results from linear algebra.
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