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1 Let G be a finite (generally non-abelian) group of size |G| and let H be a state
space with orthonormal basis {| g〉}g∈G labelled by the elements of G.

(a) Give a statement of the hidden subgroup problem for G.

Let f : ZK → Z be a periodic function that is one-to-one within each period.
Explain how the problem of determining the period of f can be formulated as a hidden
subgroup problem for a suitable group, identifying explicitly all the ingredients in the
formulation.

(b) Let χ(1), . . . , χ(L) be a complete set of unitary irreps for G with χ(α) having
dimension dα for α = 1, 2, . . . , L. Let χ(α)(g) have matrix elements Mα,ij(g) for
1 6 i, j 6 dα and g ∈ G, and introduce the vectors (for each α, i, j)

|αij〉 =
1√
|G|

∑

g∈G
Mα,ij(g) | g〉

(where the overline denotes complex conjugation).

(i) State how the unitary quantum Fourier transform operator on H is constructed
in terms of the above ingredients. Any results from group representation theory may be
quoted without proof but they should be clearly stated.

(ii) For each g0 ∈ G introduce the linear operator U(g0) on H defined by U(g0) | g〉 =
| g0g〉 for all g ∈ G. For a subgroup H of G and any g ∈ G, introduce the coset state
| gH〉 = 1√

|H|
∑

h∈H | gh〉 (where |H| is the size of H).

For each irrep label α, show that the action of U(g0) preserves the d2α-dimensional subspace
Hα spanned by |αij〉 for 1 6 i, j 6 dα, and identify its action on that subspace (in terms
of g0 and the irrep matrices).
Hence or otherwise show that the incomplete measurement that distinguishes only the Hα

subspaces, when applied to | gH〉, has output probability distribution Π independent of
the choice of g i.e. Π depends only on the choice of subgroup H.

(iii) Is the output distribution Π above necessarily different for different subgroups
H? Give a reason for your answer.
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2 (a) Let U be a unitary operation on n qubits that we are able to implement in

poly(n) time, and suppose also that we are able to implement U (2k) in poly(n, k) time.
We are also given an eigenstate | ξ0〉 of U with known eigenvalue 1.

With all the above, suppose we are now given a further eigenstate | ξ〉 of U , having
eigenvalue λ that is unknown, but promised to be of the form λ = e2πiφ with φ = c/2m for
integers c and m with 0 6 c 6 2m − 1. Show (with the aid of suitable circuit diagrams if
desired) how c may be determined in a time that grows polynomially in n and m. Also give
a brief justification that your proposed method has the required poly(n,m) time bound.

(b) Let A be an n-qubit Hermitian operator with all eigenvalues λi being distinct
and 0 < λi < 1 for all i. Suppose that we are able to implement the (n + 1)-
qubit operations C-U± which are the controlled operations corresponding to the unitary
operators U± = e±2πiA respectively.

We are given a single instance of an n-qubit state | b〉 (as a quantum physical
state) and we wish to produce the state |ψ〉 given by the vector eA | b〉 normalised. For
implementing quantum operations we have available a universal set of quantum gates.
Show how the state |ψ〉 may be obtained with a non-zero probability of success PS and
give a positive lower bound for PS that is independent of | b〉.
[You may ignore issues of precision, and assume that all needed numerical quantities can
be adequately represented in O(n) bits.]

3 (a)(i) State the Amplitude Amplification Theorem as it applies to a subspace G of
a state space H and state |ψ〉 ∈ H.

(ii) Suppose we have a quantum factoring algorithm that operates as follows. For
any n-bit integer N , there is a classical poly(n) time algorithm that given N , outputs
a description of a poly(n)-sized quantum circuit CN on n qubits. Then CN is run on
| 0〉⊗n and all lines are measured. The resulting output x (viewed as an n-bit integer) has
the property that if N is composite then x is a (non-trivial) factor of N with probability
equalling sin2(π/10).

Given the above, show how we may construct a poly(n) time quantum algorithm
that outputs a factor of N with certainty if N is composite. You should include a
justification that your proposed algorithm runs in poly(n) time. [You may assume that
the n-qubit operation I − 2 | 00 . . . 0〉 〈00 . . . 0 | (with I being the identity operation) is
implementable in poly(n) time.]

(b) Consider the Harrow-Hassidim-Lloyd (HHL) algorithm as applied to the linear
system Ax = b, for x ∈ CN and A being a Hermitian N × N matrix. You may assume
that A and b satisfy all the properties required for the HHL algorithm to apply.

Define the condition number κ of A. Suppose now that all eigenvalues of A are
in the interval [0, 1]. By briefly outlining the steps of the HHL algorithm or otherwise,
explain why the requirement that κ be O(poly(logN)) is needed if the algorithm is to
run in O(poly(logN)) time, to produce its output state corresponding to the vector A−1b
normalised, with any constant level of probability (independent of N).
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4 Consider a quantum computational process denoted summarily as C(|ψ0〉 , C,K),
defined as follows. We have a specified quantum poly-time circuit C on n qubits labelled
1, . . . , n, with input being the product state |ψ0〉 = |α1〉 . . . |αn〉, and output given by a
computational basis measurement on a subset of K specified lines, labelled i1, . . . , iK .

(i) Define what it means for the output of the process to be classically strongly
efficiently simulatable.

(ii) Define the notion of a Clifford operation. Suppose now that the circuit C in
C(|ψ0〉 , C,K) is made of gates from the set {H,CX,S} (where H is the Hadamard gate,
CX the controlled X gate and S is the π/2 phase gate), and K = 1 with i1 = 1. Show
that the output is classically strongly efficiently simulatable.
[You may assume that H,CX and S are all Clifford operations.]

(iii) Introduce now the extra (non-Clifford) gate T =

(
1 0

0 eiπ/4

)
. You may

assume that {H,CX,S, T} is a universal set of gates for quantum computation. You may
also assume that the action of T on any qubit line j may be implemented by an adaptive
Clifford process (called the T -gadget) of the following form: we introduce an extra ancillary
qubit (labelled a) in state |A〉 = 1√

2

(
| 0〉 + eiπ/4 | 1〉

)
, apply CXja, measure line a to obtain

a result m = 0 or 1, and finally apply Sm to line j. The ancillary qubit line is not used
again.

Given all the above, consider computational processes of the form C(|ψ0〉 , C,K) for
poly(n)-sized Clifford circuits C of gates from {H,CX,S} (and having no intermediate
measurements) and arbitrary product state inputs |ψ0〉, and now with K > 1 (instead of
just K = 1 as in (ii) above).

Show that if any such C(|ψ0〉 , C,K) is classically strongly efficiently simulatable for
any 1 6 K 6 n then we would have P = BQP i.e. if D is any decision problem that can
be solved in quantum poly-time with bounded error, then we would have that D can be
solved in classical deterministic poly-time.

END OF PAPER
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