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1 Hyper-accreting black holes
One model for gamma ray bursts involves a disc orbiting around a newly formed

black hole and accreting mass at an immense rate. The inner disk is approximated as
Keplerian with an inner radius at the ISCO (risco), the plasma cooled by neutrinos, and
its equation of state dominated by radiation and relativistic electrons and positrons:

C = AρT 1/β, P = 11
12aT

4.

Here C is the cooling rate per unit volume, and A, β, and a are positive constants. The
disk is assumed to be receiving mass at a large outer radius at a constant rate Ṁ .

(a) The diffusion equation governing the evolution of the disc’s surface density Σ is

∂Σ

∂t
=

3

r

∂

∂r

[
r1/2

∂

∂r

(
r1/2ν̄Σ

)]
,

in which ν̄ is the mean viscosity.

Give a physical argument for why the disk experiences no torque at r = risco. If the
disc is in steady state, show that ν̄Σ = Ṁf(r), where f is a dimensionless function you
should find.

(b) At a given radius, the equations of vertical structure include:

∂P

∂z
= −zΩ2ρ, C =

9

4
Ω2µ,

in which µ = αP/Ω is the dynamical viscosity, and α is a constant.

(i) On what timescales do each of these equations establish equilibrium, and how
do they compare with the evolutionary timescale of Σ?

(ii) Taking an order of magnitude approach, set ρ ∼ Σ/H, where H is the disk
thickness, and solve the first equation for H. By sketching the heating and cooling rates as
functions of T , or otherwise, determine that the disk is thermally stable when 0 < β < 1/8.

(iii) Now solve these equations exactly for T , subject to the boundary condition
T = T0(r) at z = 0, writing your solution in the form T = T0 g(z/H)m, where g(z/H) is
a dimensionless function and m is an exponent (both to be determined), and

H =

√
32AβT

1/β
0

9αΩ3
.

Find similar expressions for ρ and P , and write down relations between their midplane
values (ρ0 and P0) and T0.

(c) In the following we set β = 1/2, and assume that thermal instability is suppressed
by an additional process.

(i) Find the exact relationship connecting ρ0 and Σ and, recalling the definition
ν̄Σ =

∫
µdz, the relationship connecting P0 and ν̄Σ.

(ii) Combining parts (a) and (b), show that T0 ∝ f1/5r−3/4, and hence

H ∝ f1/5r3/2, and Σ ∝ f3/5r−3/2.
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2 Gravitoturbulent protoplanetary discs
Consider a self-gravitating gaseous disc in Keplerian rotation, modelled as razor

thin. Small-amplitude, local, and axisymmetric density waves within the disc obey the
dispersion relation,

ω2 = Ω2 − 2πGΣ|k|+ c2sk
2,

where ω and k are the disturbance’s frequency and radial wavenumber, and Ω, Σ, and cs
are the equilibrium disc’s orbital frequency, surface density, and sound speed.

(a) Explain the physical origin of each of the three terms on the right side of the
dispersion relation.

(b) In the absence of self-gravity, show that the phase speed cp and group speed cg
of the density waves satisfy cpcg = c2s.

If self-gravity is reinstated, demonstrate that cpcg switches sign at a critical
wavenumber, which you should find. What are the implications for a localised packet
of density waves?

(c) Suppose the disc is gravitationally unstable, with growing modes on the range
k1 < k < k2. Find expressions for k1 and k2 in terms of Q = csΩ/(πGΣ) and H = cs/Ω.
Use these to derive the Toomre instability criterion. For Q much less than 1, show that
k1 ≈ 1

2QH
−1 and k2 ≈ 2Q−1H−1.

(d) One prescription for the turbulent viscosity ν̄ in a gravitationally unstable disk
sets ν̄ ∼ k−2

1 Ω. Given that the longest unstable mode possesses a wavenumber ∼ k1, offer
a justification for this prescription.

Show that the prescription suggests ν̄ ∝ r9/2Σ2, where r is the cylindrical radius to
the central star. Next show that the viscous lifetime of the disk is tν ∼ (M∗/MD)2Ω−1,
where M∗ and MD are the initial masses of the star and disk.

(e) Let us now set ν̄ = Ar9/2Σ2, where A is a dimensional constant. An initially
narrow ring of material will spread under the action of this viscosity, with its outer radius
given by R(t) a function of time t. Suppose the inner radius can be taken to 0, and that
it experiences no torque.

Show that the constant angular momentum J may be written as

J = (M∗G)1/2B, where B =

∫ R

0
r1/2 Σ 2πrdr.

Use dimensional analysis to relate R, t, A, and B, and prove that R ∝ t2/5.
The full similarity solution in this case corresponds to

Σ = Σ0

(
r

R0

)−3/2( t

t0

)−2/5 [
1−

√
r

R(t)

]1/2
,

with R = R0(t/t0)
2/5, and R0, t0, Σ0 constants. Show that the total mass in the disc

decreases according to

MD =
8

3
πΣ0R

2
0

(
t

t0

)−1/5

.
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3 Inertial waves and vortex stability
The equations governing fluid motion in the incompressible shearing sheet are

∂u

∂t
+ u · ∇u = −2Ωez × u− 1

ρ
∇P −∇Φt,

∇ · u = 0,

where the tidal potential is Φt = −3
2Ω2x2.

(a) Verify that u = −3
2Ωxey, P = P0 is a solution (P0 a constant).

Perturb this state with an axisymmetric disturbance u′, P ′, and derive the four linearised
equations governing its evolution:

∂tu
′
x = −∂xh′ + 2Ωu′y, ∂tu

′
y = −1

2Ωu′x,

∂tu
′
z = −∂zh′, ∂xu

′
x + ∂zu

′
z = 0,

where h′ = P ′/ρ. Show that these can be reworked into

∂2t (∇2u′x) + Ω2∂2zu
′
x = 0.

Assume that the disturbance is ∝ exp(ikxx+ikzz− iωt), and derive the dispersion relation
for inertial waves. When kx = 0 and kz 6= 0, prove that u′z = h′ = 0, and then describe
the nature of this particular mode.
(b) The core of a Kida vortex in the shearing sheet can be described by

u =
3Ω

2(r − 1)

(y
r
ex − rxey

)
,

where r is equal to the ratio of the vortex’s semi-major axis to semi-minor axis, with the
former aligned with the azimuthal direction.
In the limit r → ∞ verify that the solution converges to circular Keplerian rotation. A
fluid blob has position vector x = x(t), with dx/dt = u. Show that the time it takes for
the blob to circulate around the vortex is 4π(r − 1)/(3Ω).
Perturb the vortex solution with a disturbance that only depends on z and t. Write down
the linearised horizontal perturbation equations and, on assuming the disturbances are
∝ exp(−iωt), show that

ω2 = Ω2

[
2− 3

2r(r − 1)

] [
2− 3r

2(r − 1)

]
.

Demonstrate that the mode grows when 3/2 < r < 4.
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