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(i) Starting from the equation of relative motion, show that the relative velocity v
between two bodies of masses M1 and M2 at separation r is given by

0.5v2 − µ/r = C,

where µ = G(M1 +M2) and C is a constant.

(ii) Given that r = ±a(1 − e2)/(1 + e cos f) for bound orbits (positive sign) and
hyperbolic orbits (negative sign), where a > 0 is the semimajor axis, e is the eccentricity
and f the true anomaly of the orbit, show that C = ∓0.5µ/a.

(iii) A planet of mass Mp is on a circular orbit a distance ap from a star of mass
M? �Mp. A comet of mass Mc �Mp is on an orbit about the star that is coplanar with
that of the planet, and that has semimajor axis ac and eccentricity ec. The comet has a
close encounter with the planet. Show that the relative velocity of the encounter is

∆vpc = vp

[
3 − (ap/ac) − 2

√
(ac/ap)(1 − e2c)

]1/2
,

where vp is the orbital velocity of the planet.

(iv) During the encounter the gravity of the star can be ignored and the comet’s
trajectory relative to the planet is hyperbolic with impact parameter b. A moon of mass
Mm � Mp is on a circular orbit a distance am from the planet. Its orbit is prograde in
the same plane as the planet’s orbit. The comet has a close encounter with the moon.
Determine the radial and tangential components of the comet’s velocity relative to the
planet and hence show that its velocity relative to the moon is

∆vmc =
√

3v2m − 2vm∆vpc(b/am) + ∆v2pc,

where vm is the orbital velocity of the moon.

(v) Determine the largest impact parameter for which the comet could hit the moon.

(vi) What is the smallest impact parameter for the comet to avoid hitting the planet
if its radius is Rp?

(vii) How would the above calculations be affected if the comet’s circumstellar orbit
had been inclined to that of the planet by an inclination Ic?
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(i) Consider a test particle in the vicinity of a binary comprised of bodies of mass M1

and M2. The binary follows a circular orbit about its centre of mass O. Units are chosen
such that both the separation and mean motion of the binary are unity. The location of
the particle is given by (x, y, z) in the rotating frame (x̂xx, ŷyy, ẑzz) that is centred on O with
x̂xx pointing towards M2 and ẑzz parallel with the binary angular momentum vector. Derive
expressions for r1 and r2, the distance of the particle from M1 and M2, respectively, in
terms of x, y, z and µi = GMi, where G is the gravitational constant.

(ii) In addition to the gravity of the two bodies, the test particle is subjected to
acceleration due to radiation pressure from the mass M1, the magnitude of which is a
constant β1 times the acceleration towards that body due to gravity. Derive the particle’s
equation of motion and show that this can be written in the form

ẍ− 2ẏ = ∂U/∂x,

ÿ + 2ẋ = ∂U/∂y,

z̈ = ∂U/∂z,

where U = 1
2(x2 + y2) + µ1(1 − β1)/r1 + µ2/r2.

(iii) Derive a constant of motion for the particle’s motion.

(iv) Show that the equilibrium points of the particle’s motion satisfy

Az = 0,

(1 −A)y = 0,

(1 −A)x = µ1µ2[(1 − β1)r
−3
1 − r−3

2 ],

where an expression for A should be determined.

(v) Use the result from (iv) to sketch how the locations of the triangular Lagrange
equilibrium points (i.e., L4 and L5) change as the value of β1 is increased from 0 to 1.

(vi) Consider the situation where the test particle is also subject to radiation
pressure from M2, which is characterised by a constant β2. Describe how this affects
the location of the triangular equilibrium points and the constraints on β1 and β2 for such
points to exist.

(vii) What other physical process is likely to be relevant to the above calculations?
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(i) Sketch the ratio β of the radiation pressure force to stellar gravity acting on dust
grains near a main sequence star of mass M? ≈ 1M� as a function of their diameter D.
Explain the physical origin and location of any changes in slope on the figure.

(ii) A comet of mass m � M? is orbiting the star with semimajor axis a and
eccentricity e. A dust grain with a radiation pressure coefficient β is released from the
comet with zero relative velocity at a distance r from the star. Show that the grain’s new
orbit has a semimajor axis and eccentricity of

ad = a(1 − β)/(1 − 2βa/r),

ed =
[
(e− β)2 + 2βa(1 − e2)/r

]1/2
/(1 − β).

You may use without proof the standard two-body results that 0.5v2 − µ/r = −0.5µ/a
and h =

√
µa(1 − e2).

(iii) The comet is on a near parabolic orbit with e = 1−δ, where δ � 1. Show that,
to lowest order in δ, the distance within which dust grains are placed on unbound orbits
is ∼ Qβ/(1 − β), where Q is the comet’s separation from the star at apocentre.

(iv) Show that dust released at pericentre is unbound if β > δ/2.

(v) A synchrone is a line connecting particles released from the comet at the same
time in the past. Consider the trajectories of particles released at pericentre with β = 1,
as well as those with slightly larger and smaller values of β. Explaining your reasoning,
sketch the synchrone of particles with a wide range of β released at pericentre when the
comet has reached a true anomaly f = π/2.

(vi) A syndyne is a line connecting particles with the same dynamics (i.e., the same
β) that were released at different times. Explaining your reasoning, sketch the syndynes
when the comet is at f = π/2 for particles with β = 1, and for those with slightly
smaller and larger β, extending these back to the particles released when the comet was
at f = −π/2,

(vii) Comment on the implications for the shape of cometary dust tails and their
orientation as a function of particle size.
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(i) Derive the equation of motion for a body of mass M1 moving in the gravitational
potential of a star of mass M? and another body of mass M2 in the form

r̈1 = ∇(U1 +R1),

where ri is the vector from M? to Mi, U1 is the two-body potential of the masses M? and
M1, and R1 is the disturbing function arising from the presence of M2, an equation for
which should be given along with a meaning for its different components.

(ii) Describe the form of the disturbing function when expanded in terms of the
orbital elements of the two-body motion of Mi about M?, which can be given using the
standard notation ai, ei, Ii, $i, Ωi, λi.

(iii) Identify three classes for the terms in the disturbing function based on the
timescales on which they vary. Provide a physical explanation for the origin of the
perturbations associated with the different classes and the situations in which each might
be relevant.

(iv) The two bodies are in an inclination resonance in which the resonant angle
φ = (p + q)λ2 − pλ1 − qΩ2 is librating. Give a constraint on q, and by considering the
location of the two bodies relative to each other and the longitude of ascending node,
describe the geometrical interpretation of φ/p and φ/q. You may assume that r2 > r1,
where ri = |ri|.

(v) Consider the situation that M2 �M1 and the inner body’s orbital plane remains
at I1 ≈ 0. Sketch the view along the ascending node Ω2 towards the star, as well as the
face-on view of the system, for the situation that conjunction between the two bodies
occurs just after passing through the ascending node, and describe how the perturbing
forces due to the encounter affect the orbit of M2.

(vi) Use the above results to determine the value about which φ will oscillate for
q = 2, explaining your reasoning.

(vii) Sketch the orbit of M2 as viewed in a frame that is rotating with M1 and with
the line of sight parallel to the vector connecting M1 and M?.

END OF PAPER

Part III, Paper 316


