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1

Show, by constructing an atlas consisting of two charts, and using a stereographic
projection, that a sphere

Sn = {r ∈ Rn+1, |r| = 1}
is a smooth manifold of dimension n.

Prove that any Lie group is a parallelizable manifold.

Construct the general form of an element of the the group SU(2), and deduce that
S3 is parallelizable.

Show that there exists at least one more n 6= 3 such that Sn is parallelizable.

2

Define the Lie group SO(3), and find a basis for its Lie algebra.

Show that the action r→ Ar of SO(3) on R3 is generated by three vector fields

Va =
3∑

b,c=1

εabcx
b ∂

∂xc
, a = 1, 2, 3, (1)

and show that these vector fields span a Lie algebra.

Show that the vector fields (1) are Hamiltonian with respect to the Poisson structure
on R3 given by

{x, y} = z, {y, z} = x, {z, x} = y

and find the corresponding Hamiltonians.

Find a non–constant function F : R3 → R such that {F, xa} = 0, a = 1, 2, 3. Hence,
or otherwise show that the group action descends to a symplectic action on a two–sphere
S2 ⊂ R3.
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Let A be an su(2) valued one–form on RD. Define the 2nd Chern form C2, and
show that C2 = dY , where

Y =
1

8π2
Tr(A ∧ dA+ cA ∧A ∧A)

where c is a constant which should be determined.

Show that if g : RD → SU(2) and

A→ gAg−1 − dg · g−1 (1)

then
F = dA+A ∧A→ gFg−1, and C2 → C2.

State the boundary conditions satisfied by an SU(2) Yang–Mills instanton on R4, and
express the instanton number in terms of an integral involving the gauge transformation
at infinity.
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