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(a) (i) What is a null geodesic congruence? Let Ua be tangent to the affinely paramet-
erized geodesics of a null geodesic congruence. Let Bab = ∇bUa. Explain why
UaBab = BabU

b = 0. [2]

(ii) Explain how to construct a vector field Na such that N2 = 0, U ·N = −1 and
U · ∇Na = 0. [2]

(iii) Let P a
b = δab + UaNb +NaUb and B̂a

b = P a
cB

c
dP

d
b. Explain how to define the

expansion θ, rotation ω̂ab and shear σ̂ab of the congruence in terms of B̂a
b. [1]

(iv) Consider a null geodesic congruence containing the generators of a null hyper-
surface N . Show that the rotation vanishes on N . [You may assume Frobenius
theorem.] [5]

(b) Derive Raychaudhuri’s equation

dθ

dλ
= −1

2
θ2 − σ̂abσ̂ab + ω̂abω̂ab − UaU bRab ,

for an affinely parametrised null congruence of geodesics with tangent vector Ua. [7]

(c) Assume the spacetime satisfies the Einstein equation with matter obeying the null
energy condition. Show that if θ = θ0 < 0 at a point p on a generator γ of a null
hypersurface, then θ → −∞ within finite affine parameter distance 2/|θ0|, provided γ
extends this far. [3]

(d) Show that if T is a trapped surface in a strongly asymptotically predictable spacetime
obeying the null energy condition, then T must be contained inside a black hole region.
[You may assume that strong asymptotic predictability can be used to show that J̇+(T )
intersects I+ and that every p ∈ J̇+(T ) lies on a future-directed null geodesic starting
from T , orthogonal to T , with no point conjugate to T between T and p. You may
also assume that if θ → −∞ at a point q on a null geodesic γ through p, then q is
conjugate to p along γ.] [10]
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2 Consider the following line element for a six-dimensional rotating black hole solution
in Boyer-Lindquist type coordinates (t, r, θ, φ, λ, ψ)

ds2 = − ∆(r)

Σ(r, θ)

(
dt− a sin2 θ dφ

)2
+ Σ(r, θ)

[
dr2

∆(r)
+ dθ2

]

+
sin2 θ

Σ(r, θ)

[
a dt−

(
r2 + a2

)
dφ
]2

+ r2 cos2 θ
(
dλ2 + sin2 λ dψ2

)
,

with
∆(r) = r2 + a2 − r+

r
(r2+ + a2) , Σ(r, θ) = r2 + a2 cos2 θ .

and 0 6 θ 6 π/2, 0 6 λ 6 π, ψ ∼ ψ + 2π and φ ∼ φ+ 2π.

You may assume that

√−g = r2 sin θ cos2 θ sinλΣ(r, θ)

and

RabcdRabcd =
12r2+

(
a2 + r2+

)2

r6Σ(r, θ)6
[
Σ(r, θ)4 + r2Σ(r, θ)3 + 2r4Σ(r, θ)2 − 16r6Σ(r, θ) + 32r8

]
.

(a) Show that

K =
∂

∂t
and m =

∂

∂φ

are Killing vectors. [2]

(b) Compute the Komar mass M of this solution defined by

M = − 1

12π
lim

r→+∞

∫
? dK ,

where the integral is taken over a constant t, r surface and the orientation is dt∧ dr ∧
dθ ∧ dφ ∧ dλ ∧ dψ. [10]

(c) By introducing Kerr like coordinates (v, r, θ, χ, λ, ψ) with

dv = dt+
r2 + a2

∆(r)
dr and dχ = dφ+

a

∆(r)
dr

show that r = r+ is a null hypersurface with normal ξ = K + ΩH m where
ΩH = a/(r2+ + a2). [8]

(d) Compute the surface gravity associated with ξ, and the area A of the intersection of
the black hole event horizon with a partial Cauchy surface of constant v. [6]

(e) Sketch the Penrose diagram for the spacetime described by this metric on the
submanifold θ = λ = 0. [4]
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(a) State and prove the version of the first law of black hole mechanics that relates
the change in area of the event horizon to the energy and angular momentum of
infalling matter. [You may assume Raychaudhuri’s equation, knowledge of Gaussian
null coordinates and the zeroth law of black hole mechanics.] [10]

(b) State the second law of black hole mechanics and sketch a proof. [You may assume
that the generators of the future horizon are complete to the future and standard results
on conjugate points.] [5]

(c) Consider two identical and initially far apart Kerr black holes with parameters (M,J),
which merge to form a Schwarzschild black hole with mass M ′. The fraction of the
initial energy radiated in gravitational waves is

η =
2M −M ′

2M
.

Use the second law to derive an upper bound on η in terms of J/M2. What is the
initial configuration that achieves the highest η? [You may assume that the area of the
intersection of the future event horizon of a Kerr black hole, with mass M and angular

momentum J , and a partial Cauchy surface is given by A = 8π
(
M2 +

√
M4 − J2

)
.]

[5]

(d) Let (M, g) be a strongly asymptotically predictable spacetime and (M, g) be its
conformal compactification. Let Σ1 and Σ2 be Cauchy surfaces for an open region
V ⊂M with Σ2 ⊂ I+(Σ1) andM∩ J−(I+) ⊂ V . Let B be the black hole region and
B be a connected component of B ∩Σ1. Show that J+(B) ∩Σ2 is contained within a
connected component of B ∩ Σ2. Explain in which sense this theorem ensures that a
black hole cannot split. [10]
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(a) Describe how a free massive real scalar field is quantised in a stationary and globally
hyperbolic spacetime (M, g). Define the vacuum state. [6]

(b) Suppose a spacetime (M, g) has the form of a sandwich: there are two non-intersecting
Cauchy surfaces, Σ1 and Σ2 such that the spacetime is stationary to the past of Σ1

and to the future of Σ2, and in between it is time dependent.

(i) Describe how this may lead to particle production. Derive the formula, in terms
of Bogoliubov coefficients, for the expectation value of the number of particles
in a certain mode as measured by an observer in the far future, in the vacuum
state as defined by an observer in the far past. [6]

(ii) Why is this sandwich spacetime example relevant to the derivation of Hawking
radiation in the spacetime of gravitational collapse to a black hole? [2]

(c) Consider the Kerr black hole in Kerr coordinates (v, r, θ, χ)

ds2 = − ∆(r)

Σ(r, θ)

(
dv − a sin2 θ dχ

)2
+ 2dvdr − 2 a sin2 θ dr dχ+ Σ(r, θ) dθ2

+
sin2 θ

Σ(r, θ)

[
a dv −

(
r2 + a2

)
dχ

]2
,

with
∆(r) = (r − r+)(r − r−) and Σ(r, θ) = r2 + a2 cos2 θ

where r± = M ±
√
M2 − a2, with |a| 6M and a = J/M .

(i) Assuming that r = r+ is a Killing horizon of

ξ =
∂

∂v
+ ΩH

∂

∂χ

determine ΩH and the Hawking temperature TH of the Kerr black hole. [4]

(ii) Consider such a black hole in thermal equilibrium with an infinite reservoir of
radiation at temperature TH and take a = 0. Explain why the black hole is
thermodynamically unstable. [2]

(iii) The specific heat of a rotating black hole of mass M and fixed angular momentum
J is

CJ = TH
∂SBH

∂TH

∣∣∣∣
J

.

Using the Bekenstein-Hawking entropy relation determine CJ . [Hint: it might
be useful to express the spin parameter a as a2 = r+r−.] [8]

(iv) Find the range of values of |a| for fixed M for which the black hole is in stable
equilibrium with an infinite reservoir of radiation at its Hawking temperature. [2]
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