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1 In this question you will compare the predictions of an Einstein de Sitter universe
(which has a matter density parameter Ωm,0 = 1 today) and a simplified LCDM cosmology
that you can assume is described fully by density parameters today of ΩΛ,0 = 0.7 and
Ωm,0 = 0.3. You may assume throughout the question that radiation density and curvature

are negligible. You may also assume the Friedmann and continuity equations ( ȧa)2 = 8πGρ
3 ,

( äa) = −4πG
3 (ρ+ 3P ), and dρ = −3daa (ρ+ P ).

(a) From the continuity equation, demonstrate that for a component with equation of
state parameter w, the energy density ρ evolves with scale factor a as

ρ ∝ a−3(1+w) (1)

Hence show that the Hubble parameter at redshift z can be written as

H(z) = H0

[∑

i

Ωi,0(1 + z)3(1+wi)

]1/2

(2)

where you should define the density parameter Ωi,0, the sum is over components i with
equation of state parameters wi, and H0 is the Hubble constant.

(b) Show that the deceleration parameter q, which is defined as q ≡ − äa
(ȧ)2

, can be written
as

q =
1

2

∑

i

Ωi(z)(1 + 3wi), (3)

where Ωi(z) is the density parameter of component i at redshift z.

From supernova lightcurves we have determined that the deceleration parameter
has a negative value today. Is this consistent with an Einstein de Sitter cosmology or with
the simplified LCDM cosmology described above?

(c) Derive an expression for the age of the universe in terms of the matter density
parameter today Ωm,0, the dark energy density parameter today ΩΛ,0, and the Hubble
constant H0 (you may leave your result as an integral). Deduce that for an Einstein de
Sitter universe the age of the universe t0 is

t0 =
2

3
H−1

0 (4)

(d) The ages of the oldest stars in globular clusters have been measured to be 12 billion
years; the Hubble constant has also been measured to have a value such that H−1

0 = 14
billion years. Are these measurements compatible within an Einstein de Sitter cosmology?
Justify your answer. Briefly and qualitatively discuss whether a LCDM cosmology could
provide better consistency between these measurements.
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2 In this question you will discuss inflation and its end. You may assume that
the energy momentum tensor for a scalar inflaton field φ with potential V (φ) is Tµν =
∂µφ∂νφ − gµν

(
1
2g
αβ∂αφ∂βφ− V (φ)

)
and that for a comoving observer T00 = ρφ and

Tij = −Pφgij (using a + − − − metric signature). You may further neglect fluctuations
in φ and assume that its value is independent of spatial position.

(a) From the energy momentum tensor, show that the energy density ρφ and pressure Pφ
of the inflaton field are given by

ρφ =
1

2
φ̇2 + V (φ) (1)

Pφ =
1

2
φ̇2 − V (φ) (2)

(b) Using the Friedmann equations or otherwise, deduce the Klein-Gordon equation for
the inflaton:

φ̈+ 3Hφ̇ = −dV
dφ

(3)

Write down approximate equations for the evolution of φ and of H during slow-roll
inflation.
[Hint: the second Friedmann equation is given by Ḣ +H2 = ( äa) = −4πG

3 (ρ+ 3P ).]

(c) Now consider an inflation model with a potential V (φ) = V0

(
1− e−

√
2
3

φ
Mpl

)2

. By

considering the potential slow roll parameters, show that for φ �
√

3M2
pl

2 the potential

does not allow slow-roll inflation but that for φ�
√

3M2
pl

2 it does admit slow-roll inflation.

[Hint: the potential slow-roll parameters are εV =
M2
pl

2

(
V,φ
V

)2
and ηV = M2

pl

(
V,φφ
V

)
]

(d) After inflation has ended in this model, the 3Hφ̇ term in the Klein-Gordon equation
can be neglected. By expanding the potential to leading order in φ around its minimum,
write down an approximate oscillatory equation of motion for φ after inflation has
ended. Evaluate an average of the inflaton field’s energy density and pressure over many
oscillations and hence show that the average energy density is expected to fall as ρφ ∝ a−3

after inflation has ended.

(e) Are there any potentials V (φ) for which you would not expect this ρφ ∝ a−3 evolution
after the end of inflation? Justify your answer.
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(a) Explain in detail why the temperature of the cosmic neutrino background today Tν is
related to the CMB photon temperature T today by

Tν
T

=

(
4

11

)1/3

. (1)

In your explanation, you may assume without proof that the entropy S = ρ+P
T V is

conserved in an expanding universe.

(b) After neutrino decoupling, the relic neutrinos retain the relativistic Fermi-Dirac
distribution function (even if the individual neutrinos become non-relativistic), which is
given by

f(p) =
1

eap/Tν + 1
(2)

in terms of the magnitude of the momentum p.

Write down an integral expression for the energy density of one relic neutrino species
and show that in the limit of early times (small scale factor a) where Tν/a � mν , with
mν the small mass of this neutrino species, the energy density is:

ρν =
7π2

120
(Tν)4/a4. (3)

[Hint: you may assume that g = 2 for this neutrino species and that the density
of particles in phase space is g

(2π)3
f(p). You may also use the standard integrals:

∫∞
0

xa

ex+1 = a!
(
1 − 1

2a

)
ζ(a+ 1), where ζ(2) = π2

6 , ζ(3) ≈ 1.202, ζ(4) = π4

90 , ζ(5) ≈ 1.037]

(c) Similarly show, by expanding to leading order in Tν/(am), that at late times
where Tν/a� mν , the energy density becomes

ρν ≈ nνmν

(
1 + F × (Tν/(amν))2

)
, (4)

where F is a constant you should specify and where the neutrino species’ number density
is nν = 3ζ(3)

2π2 (Tν/a)3.

(d) Use the result in (c) to calculate an order of magnitude estimate (written in terms of
Tν , a and mν) for the mean velocity of the neutrinos at late times where Tν/a� mν .

(e) A far-future experiment is able to measure the neutrino flux from the cosmic neutrino
background as a function of position on the sky. Explain why, in principle, this contains
information about density fluctuations from times earlier than CMB recombination. In
analogy with the CMB, we can define a cosmic neutrino background last scattering surface
that describes where and when these neutrinos decoupled; would you always expect the
neutrino last scattering surface to lie at a larger comoving distance from Earth than the
CMB last-scattering surface? Justify your answer.
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4 In this question you will discuss perturbations on superhorizon scales.

(a) Consider a standard single-field slow-roll inflation model, where φ is the inflation field
and V (φ) is its potential. You may assume that a(τ) = −(Hτ)−1 (with τ the conformal

time) and that H =

√
V (φ)
3M2

pl
≈ constant. Canonical quantization leads to the following

expressions for the field operator f̂ = aδ̂φ and its conjugate momentum π̂, describing
perturbations to the inflation field δφ:

f̂(τ,x) =

∫
d3k

(2π)3

[
fk(τ)â†ke

−ik·x + f∗k(τ)âke
ik·x
]

π̂(τ,x) =

∫
d3k

(2π)3

[
f ′k(τ)â†ke

−ik·x + (f∗)′k(τ)âke
ik·x
]

where f∗k(τ) = e−ikτ√
2k

(1 − i
kτ ) and âk, â

†
k′ are lowering and raising operators. State

the commutation relations obeyed by âk and â†k′ . By calculating the two point correlation
function of δφ, show that the dimensionless power spectrum of δφ after horizon exit is

∆2
δφ(k) =

(
H

2π

)2

(1)

[Hint: you may assume that the dimensionless power spectrum ∆2
δφ is related to the two

point correlation function via 〈0|δ̂φ(τ,x)δ̂φ(τ,x + r)|0〉 =
∫

d3k
(2π)3

2π2

k3
∆2
δφe
−ik·r.]

(b) Assuming the model from (a), calculate the commutator of f̂ and π̂ on superhorizon
scales. Given your results, are perturbations well described by classical physics on
superhorizon scales?

(c) Assuming the model from (a), evaluate f̂ and π̂ on superhorizon scales to leading
order in kτ . Using your results, approximately evaluate the commutator of f̂ and π̂ on
superhorizon scales and comment on the significance of your answer.

(d) Show that when all perturbations are adiabatic, the curvature perturbation R is
conserved outside the horizon. Now consider also the presence of an entropy perturbation
S in the universe consisting only of CDM and photons, defined by:

S ≡ δc −
3

4
δγ . (2)

Show that when S is non-zero, the curvature perturbation on superhorizon scales evolves
as:

dR
d ln a

= −f(ρ̄γ , ρ̄c)S, (3)

where you should specify the function f(ρ̄γ , ρ̄c).

[Hint: you may assume that on superhorizon scales (ρ̄ + P̄ )R
′
H = −(δP − P̄ ′

ρ̄′ δρ), where ρ
and P are the total energy density and pressure.]
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