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(a)(i) Let X be a vector field and T a tensor field. Explain how to define the Lie derivative
LXT .

(ii) Explain how to define coordinates (t, x1, x2, . . .) such that X = ∂/∂t. State how the
Lie derivative acts in these coordinates.

(iii) Prove that LXf = X(f) and LXY = [X,Y ] where f is a function and Y is a vector
field.

(iv) Let T be a tensor of type (0, 2). Prove that, in any coordinate basis,

(LXT )µν = XρTµν,ρ + TµρX
ρ
,ν + TρνX

ρ
,µ

[You may assume that the Lie derivative satisfies the Leibnitz rule.]

(b) The following metric describes a nonlinear gravitational plane wave

ds2 = a(u)(x2 − y2)du2 + 2dudw + dx2 + dy2

where a(u) is a smooth function.

(i) Write down a Killing vector field of this metric.

(ii) Consider the following vector field

X = xf(u)
∂

∂w
+ p(u)

∂

∂x

Determine the necessary and sufficient conditions on f and p for X to be a Killing vector
field. Deduce that there is a 2-parameter family of Killing vector fields of the above form.

(iii) Find another 2-parameter family of Killing vector fields (this does not require a long
calculation).

(iv) Use these results to show that if r, s are points on a surface of constant u then there
exists an isometry that maps r to s.
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(a) A spacetime describing a weak gravitational field has metric gµν = ηµν + hµν with
h00 = O(ε2), h0i = O(ε3) and hij = O(ε2) where |ε| � 1.

(i) Explain how the equation of motion of a test body in this spacetime reduces to the
Newtonian equation of motion for a test body in a gravitational field, stating clearly any
additional assumptions that you make.

(ii) Assume that the matter producing the gravitational field is a perfect fluid with energy-
momentum tensor Tµν = (ρ + p)uµuν + pgµν , and the fluid satisfies the non-relativistic
conditions p/ρ = O(ε2) and ui = O(ε). Explain how to recover the Poisson equation of
Newtonian gravity. State clearly any further assumptions that you make.

[In harmonic gauge, the linearized Einstein equation is ∂ρ∂ρh̄µν = −16πTµν .]

(b) A star undergoing a supernova explosion has energy density T00(t,x) in “almost
inertial” coordinates. This can be expanded as a sum over spherical harmonics. One
way of writing this sum is

T00(t,x) =
∞∑

`=0

ai1i2...i`(t, r)x̂i1 x̂i2 . . . x̂i`

where r = |x|, x̂ = x/r, and ai1i2...i`(t, r) is totally symmetric and traceless on any pair of
indices.

Determine the power of the gravitational waves produced by the supernova crossing a
large sphere |x| = R at time t. Simplify your answer as much as possible.

[You may assume that any isotropic Cartesian tensor is a linear combination of products
of δij and εijk factors.]
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The Kasner metric is

ds2 = −dt2 + t2p1(dx1)2 + t2p2(dx2)2 + t2p3(dx3)2

where p1, p2, p3 are real constants, not all zero.

Throughout this question, indices i, j, k take values in {1, 2, 3} and the summation conven-
tion will not be used for these indices.

(a) Show that the following vector fields form an orthonormal basis:

e0 =
∂

∂t
ei = t−pi

∂

∂xi

(b) Write down the corresponding dual basis of 1-forms eµ.

(c) Determine the connection 1-forms using deµ = −ωµν ∧ eν .

(d) Determine the curvature 2-forms using Θµ
ν = dωµν + ωµρ ∧ ωρν . Hence calculate the

Riemann tensor components using Θµν = 1
2Rµνρσe

ρ ∧ eσ.

(e) Calculate the Ricci tensor and hence show that the vacuum Einstein equation is
satisfied if, and only if,

3∑

i=1

pi = A
3∑

i=1

p2i = B

for constants A,B whose values you should determine.

4

(a)(i) For a variation of the metric gab → gab + δgab derive formulae for the variations of
the volume form, the inverse metric and the Christoffel symbols.

(ii) Show that δR = −Rabδgab +∇aXa for some vector field Xa.

[In a coordinate basis Rµνρσ = ∂ρΓ
µ
νσ − ∂σΓµνρ + ΓτνσΓµτρ − ΓτνρΓ

µ
τσ ]

(b) A theory of gravity coupled to a scalar field Φ and Maxwell field Fab has action

S =
1

16π

∫
d4x
√−g

(
R− 1

2
gab∇aΦ∇bΦ− eαΦgacgbdFabFcd

)

where α is a constant. The Maxwell field is related to a 1-form potential Aa by F = dA.

(i) Derive the equations of motion of the scalar field and Maxwell field.

(ii) Determine the energy-momentum tensor of this theory.

(iii) Prove that this theory satisfies the null energy condition Tabk
akb > 0 for any null

vector ka.
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