MATHEMATICAL TRIPOS Part III

Thursday, 24 June, 2021 $\,$ 12:00 pm to 2:00 pm

PAPER 307

SUPERSYMMETRY

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. **1** Consider the action

$$S[x,\psi] = \int \left[\frac{1}{2}\dot{x}^2 + i\bar{\psi}\dot{\psi} - \frac{1}{2}(\partial h)^2 + \bar{\psi}\psi\,\partial^2 h\right]dt$$

where x(t) is a real bosonic variable, $\psi(t)$ is a complex fermionic variable with complex conjugate $\overline{\psi}(t)$, and h is a smooth, real function of x.

Show that, up to boundary terms, $S[x, \psi]$ is invariant under complex conjugation and under the supersymmetry transformations

$$\begin{split} \delta x &= \epsilon \bar{\psi} - \bar{\epsilon} \psi \\ \delta \psi &= \epsilon (i \dot{x} - \partial h) \\ \delta \bar{\psi} &= - \bar{\epsilon} (i \dot{x} + \partial h) \end{split}$$

and find the Noether charges Q and \overline{Q} corresponding to the parameters $\overline{\epsilon}$ and ϵ , respectively.

We now wish to quantize this theory. What are the canonical commutation relations among the various fields? Explain why the Hilbert space \mathcal{H} can be represented as the space of square-integrable, complex valued forms on \mathbb{R} , and identify how Q and \bar{Q} act on \mathcal{H} .

Find the unique ground state in the case $h(x) = -x^4$ [You need not determine the overall constant of normalization, provided it is finite.] Show there is no normalizable state of zero energy when h(x) is a generic cubic polynomial.

2 Consider an $\mathcal{N} = (2,2)$ supersymmetric U(1) gauge theory in d = 2. Let $\Phi^i(x^{\pm}, \theta^{\pm}, \bar{\theta}^{\pm})$ be a chiral superfield of charge q_i and let $V(x^{\pm}, \theta^{\pm}, \bar{\theta}^{\pm})$ be the vector supermultiplet containing the photon $A_{\mu}(x^{\pm})$.

Write down how gauge transformations act on Φ^i , $\overline{\Phi}^{\overline{i}}$ and V. Explain what is meant by Wess-Zumino gauge. Define the fieldstrength supermultiplet Σ and show that it is a gauge invariant twisted chiral superfield. What axial charge must be assigned to Σ if the Fayet-Iliopoulous term

$$\frac{t}{2}\int \Sigma \ d\theta^+ d\bar{\theta}^- d^2x$$

is to be invariant under axial transformations?

[You may use the fact that the chiral derivatives obey $\{\bar{D}_+, D_-\} = 0$ and $\bar{D}_+^2 = 0 = D_-^2$ without proof.]

Consider the theory on a worldsheet torus with action

$$S[\Phi^i, V] = \int \sum_i \bar{\Phi}^{\bar{\imath}} e^{q_i V} \Phi^i \ d^4\theta \ d^2x - \left(\frac{t}{2} \int \Sigma \ d\theta^+ d\bar{\theta}^- d^2x \ + \ \text{c.c.}\right)$$

in which the gauge supermultiplet V is taken to be a non-dynamical, background field. Explain why the axial U(1) transformations are preserved at the quantum level only if $\sum_{i} q_i = 0$.

2

3 In two bosonic dimensions, (0,2) superspace is defined as the surface $\theta^- = \bar{\theta}^- = 0$ inside (2,2) superspace. A (0,2) chiral field is a superfield Φ that obeys $\bar{D}_+ \Phi = 0$ where

$$\bar{D}_{+} = -\frac{\partial}{\partial\bar{\theta}^{+}} + i\theta^{+}\frac{\partial}{\partial x^{+}}$$

is the chiral derivative. What is the component expansion of a (0,2) chiral superfield? Construct a supersymmetric action $S_1[\Phi]$ whose component expansion includes the standard kinetic term for a complex scalar field.

Now let Λ_{-} be a (0,2) superfield whose leading component field is a fermionic spinor λ_{-} , and let Λ_{-} obey $\overline{D}_{+}\Lambda_{-} = f(\Phi^{i})$, where f is a holomorphic function of chiral superfields Φ^{i} . Find the component expansion of Λ_{-} and the component field expression for the action

$$S_2 = -\frac{1}{2} \int \bar{\Lambda}_- \Lambda_- \ d\theta^+ d\bar{\theta}^+ \ d^2x \, .$$

Identify which components of Λ are auxiliary.

In a theory of several such fermionic superfields Λ_{-a} , each obeying $\overline{D}_{+}\Lambda_{-a} = f_a(\Phi^i)$, it is desired to add the terms

$$S_3 = -\left(\int \Lambda_{-a} J^a(\Phi^i) \ d\theta^+ d^2 y + \text{ complex conjugate}\right)$$

to the action, where $J^a(\Phi^i)$ are further holomorphic functions of (0,2) chiral superfields and $y^+ = x^+ + i\theta^+\bar{\theta}^+$ while $y^- = x^-$. Under what condition(s) are these terms also supersymmetric?

Find the potential experienced by the scalars ϕ^i in the theory $S_1 + S_2 + S_3$ after eliminating the auxiliary field(s).

END OF PAPER