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1

Consider a vector field Xµ(x) of mass MX 6= 0.

(a) By quoting results for the representations of the Poincaré group, determine the number
of degrees of freedom in Xµ defined by the number of polarisations of the corresponding
one-particle states and show explicitly the difference with the massless case.

(b) Derive the propagator in momentum space for Xµ.

(c) Contrary to the Coulomb interactions V ∼ 1/r which are long range, show that this
field being massive, mediates short range interactions (you may consider for simplicity
the case of a massive scalar which is equivalent). Could you identify another example
of short range interactions but mediated by a massless (MX = 0) vector field? Explain.

(d) If Xµ is originally a gauge field that becomes massive from the Higgs mechanism,
briefly determine how it couples to fermions charged under the corresponding gauge
symmetry and then show that these interactions reduce to the 4-Fermi interaction at
energies smaller than the Xµ mass, MX . Determine the Fermi coupling in terms of
MX .

(e) Describe the potential problem that a field theory of a massive vector field has
regarding the breakdown of perturbative unitarity at high energies and outline how
the presence of the Higgs field and its couplings can solve this problem.
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(a) Define what is meant by an anomaly in field theory and explain the difference between
anomalies for global and local symmetries.

(b) Consider a U(1) gauge theory for massless fermions ψ of charge e. Show that besides
the conserved gauge current there is a classically conserved axial current Jµax = ψ̄γµγ5ψ
corresponding to the global U(1)ax transformation ψ → eiβγ5ψ. Derive the expression
for the U(1)ax anomaly and show that quantum mechanically the axial current change
can be written as:

∂µJ
µ
ax = − e2

16π2
εαβγδFαβFγδ

where Fµν is the U(1) gauge field strength. [You may find useful the identity
Tr {γ5 [γµ, γν ] [γρ, γσ]} = 16 i εµνρσ].

(c) Show that the gauge symmetries of the Standard Model are free from anomalies.
Determine why anomaly cancelation explains that the electric charges of the electron
and the proton are equal and opposite.

[Recall that the quantum numbers under SU(3)c×SU(2)L×U(1)Y for a family of matter
fields are

(
3,2, 16

)
+
(
3̄,1, 23

)
+
(
3̄,1,−1

3

)
+
(
1,2,−1

2

)
+ (1,1, − 1) + (1,1, 0).]
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(a) State and prove Goldstone’s theorem using both classical and quantum arguments
(you may use without proof that the conserved charges Qa are quantum operators
such that [φi, Q

a] = iT aijφj with φi scalar fields transforming in the representation of
the algebra generators T aij ).

(b) Consider an SU(3) gauge theory with gauge field Aµ(x) coupled to a scalar field Φ in
the fundamental representation.

(i) State how Aµ(x) transforms under a gauge transformation and prove that the
corresponding field strength Fµν(x) is gauge covariant.

(ii) Write down the most general renormalisable Lagrangian determining the couplings
of Φ to the gauge fields, including kinetic terms for both fields and the scalar potential
for Φ.

(iii) Show that the symmetry may be broken by a non-vanishing vacuum expectation
value for Φ. Determine the pattern of symmetry breaking and verify Goldstone’s
theorem.

(iv) Show explicitly how the Goldstone modes become the longitudinal modes of the
original gauge field to give it a mass. Are there other massive states in this theory?
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(a) By considering the couplings of the quark fields to the W± gauge bosons and to
the Higgs boson (Yukawa couplings), explain the origin of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix and determine its minimum number of free parameters.

(b) Show that the presence of a phase in the CKM matrix implies that CP is broken in
electroweak interactions.

(c) Show that the θεµνρσGAµνG
A
ρσ term in the QCD Lagrangian also breaks CP and T but

not CPT where GAµν is the field strength of the QCD gauge field.

(d) Explain clearly what is meant by the strong CP problem and outline one potential
solution to this problem.

(e) Explain why the θ parameter for the weak interactions can always be rotated away.
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