MATHEMATICAL TRIPOS Part III

Monday, 21 June, 2021 $\,$ 12:00 pm to 3:00 pm

PAPER 304

ADVANCED QUANTUM FIELD THEORY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury tag Script paper Rough paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

Consider a theory of N real scalar fields ϕ_a (a = 1, ..., N) in d > 0 dimensions, with classical action $S[\phi]$, say in Euclidean spacetime. (We adopt the notation that $\phi = (\phi_1, ..., \phi_N)$.) Write down the path integral expression for the generating functional $\mathcal{Z}[J]$, explaining the meaning of J and why $\mathcal{Z}[J]$ is called the generating functional. That is, what does $\mathcal{Z}[J]$ generate and how?

Given the Wilsonian effective action $W[J] = -\log \mathcal{Z}[J]$, write down the quantum effective action $\Gamma[\Phi]$ in terms of W[J], being sure to define Φ .

Consider the first and second functional derivatives of $\Gamma[\Phi]$ and interpret how they are related to quantities discussed above.

Given that $\mathcal{Z}[J]$ may be expressed in a perturbative expansion as a sum of Feynman diagrams, how can W[J] and $\Gamma[\Phi]$ be expressed in perturbative expansions? Justify your answers mathematically.

Assume that the classical action and the path integral measure are invariant under the field transformation

$$\phi_a(x) \mapsto \phi'_a(x) = U_{ab}\phi_b(x)$$

where U is a constant $N \times N$ invertible matrix. Show that the generating functional $\mathcal{Z}[J]$ is invariant under the transformation

$$J_a(x) \mapsto J'_a(x) = J_b(x)U_{ba}$$
.

Use this to show that the quantum effective action $\Gamma[\Phi]$ is invariant under

$$\Phi_a(x) \mapsto \Phi'_a(x) = U_{ab} \Phi_b(x) \,.$$

Consider a theory of two real, scalar fields, ϕ_0 and $\chi_0,$ in d Euclidean dimensions with the action

$$S = \int d^d x \left[\frac{1}{2} (\partial \phi_0)^2 + \frac{1}{2} m_0^2 \phi_0^2 + \frac{1}{2} (\partial \chi_0)^2 + \frac{1}{2} M_0^2 \chi_0^2 + \frac{1}{2} \lambda_0 \phi_0 \chi_0^2 \right] \,.$$

Write down the momentum space Feynman rules.

Working at one-loop order in perturbation theory, draw all one-particle irreducible (1PI) diagrams with 1, 2, or 3 external legs.

Explain how the exact, connected two-point function

$$\tilde{G}^{(2)}(p) = \int d^d x \, e^{-ip \cdot x} \langle \phi(x)\phi(0) \rangle^{\text{conn}}$$

is related to the ϕ self-energy $\Pi(p^2)$, the sum of all amputated, 1PI two-point functions with ϕ external legs.

Using dimensional regularization with $d = 6 - \epsilon$ (and ϵ small), show that the ϕ self-energy at one-loop order is equal to

$$\Pi_1(p^2) = \frac{1}{\epsilon}(A + Bp^2) + C(p^2, \mu)$$

where you should determine the constants A and B, and the function C. C is a function of p^2 and the renormalization scale μ , and it remains finite as $\epsilon \to 0$. [You can leave terms in C in integral form.]

What steps are taken to obtain finite results for the one-loop contribution to $\tilde{G}^{(2)}(p)$? How is the renormalized ϕ mass $m(\mu)$ related to the physical ϕ mass m_{phys} in the minimal subtraction scheme?

Briefly explain the meaning of the phrase *superficial degree of divergence* in relation to loop diagrams in this theory.

In addition to what you found in the calculation of the ϕ self-energy, what other counterterms are needed in order to arrive at a fully renormalized action? [For this part, explain what calculations need to be done, without explicitly doing them.]

[*Hints:* You may use the following result for d-dimensional integrals with integer a and b:

$$\int \frac{d^d \ell}{(2\pi)^d} \frac{(\ell^2)^a}{(\ell^2 + \Delta)^b} = \frac{\Gamma(b - a - \frac{d}{2}) \,\Gamma(a + \frac{d}{2})}{(4\pi)^{d/2} \,\Gamma(b) \Gamma(d/2)} \,\Delta^{-(b - a - d/2)}$$

as well as the Laurent expansion of the Γ -function near its pole at z = 0:

$$\Gamma(z) = \frac{1}{z} - \gamma + O(z)$$

where γ is the Euler-Mascheroni constant. Also recall that $(z-1)\Gamma(z-1) = \Gamma(z)$.

Part III, Paper 304

[TURN OVER]

3

 $\mathbf{2}$

3

Consider a field theory for a single scalar field which has a single dimensionless coupling g and no mass parameters. Let $G^{(n)}(x_1, \ldots, x_n) = \langle \phi(x_1) \cdots \phi(x_n) \rangle^{\text{conn}}$ be the renormalized, connected *n*-point correlation function for the scalar field ϕ . Explain why this correlation function must also depend on an additional scale μ and obey the following equation

$$\left(\mu\frac{\partial}{\partial\mu} + \beta(g)\frac{\partial}{\partial g} + n\gamma(g)\right)G^{(n)}(x_1,\dots,x_n) = 0, \qquad (*)$$

where you should define the functions $\beta(g)$ and $\gamma(g)$.

What is the significance of the β -function and of any fixed points g_* of $\beta(g)$? What does the sign of the β -function tell us about the behaviour of the coupling as μ is increased from some value μ_0 ?

Take as given that the renormalized propagator obeys

$$\int d^4x \, e^{ip \cdot x} \, G^{(2)}(x,0) = \frac{1}{p^2} \, C\left(\frac{p^2}{\mu^2}, g(\mu)\right)$$

for some function C. In the case n = 2, obtain a solution of (*) in the form

$$C\left(\frac{p^2}{\mu^2}, g(\mu)\right) = f(\mu) \ C\left(\frac{p^2}{\mu_0^2}, g(\mu_0)\right)$$

for arbitrary scale μ_0 and running coupling $g(\mu)$, the functional form of which is unspecified here. You should show that the function $f(\mu)$ takes the form $f(\mu) = \exp(h(\mu))$ where

$$h(\mu) \propto \int_{g(\mu_0)}^{g(\mu)} \frac{\gamma(g)}{\beta(g)} dg.$$

[*Hint: It may be helpful to use the substitution* $t = \log(\mu/\mu_0)$.]

Now assume that $\beta(g) = -bg^3$ with b > 0. Find all fixed points of the β -function and describe their nature. Express $g(\mu)$ in terms of $g(\mu_0)$ and the ratio μ/μ_0 . Let Λ be the scale at which $g(\mu)$ diverges according to this expression. Write $g(\mu)$ in terms of μ and Λ .

Assuming further that $\gamma(g) = cg^2$, evaluate

$$\frac{C(p^2/\mu^2, g(\mu))}{C(1, g(p))}$$

 $\mathbf{4}$

Working in 4 Euclidean dimensions, consider an SU(2) gauge theory containing a Dirac fermion field ψ (mass m) which transforms in the fundamental representation and a scalar field $\phi = \phi^a T^a$ (mass M) which transforms in the adjoint representation. That is, under a gauge transformation

$$\begin{split} \psi(x) &\mapsto e^{i\alpha^a(x)T^a}\psi(x) \\ \bar{\psi}(x) &\mapsto \bar{\psi}(x) e^{-i\alpha^a(x)T^a} \\ \phi(x) &\mapsto e^{i\alpha^a(x)T^a}\phi(x) e^{-i\alpha^b(x)T^b} \end{split}$$

[Recall that the SU(2) generators in the fundamental representation are related to the Pauli matrices by $T^a = \frac{1}{2}\sigma^a$, and the generators in the adjoint representation are related to the Levi-Civita antisymmetric tensor $(T^a_{adj})^{bc} = -i\varepsilon^{abc}$. You may use without proof the fact that the adjoint representation is real.]

(a) Construct gauge-covariant derivatives for the fermion and scalar fields, specifying how the gauge fields must transform under gauge transformations.

(b) Write down the gauge-invariant Lagrangian containing all renormalizable terms, being sure to demonstrate the gauge-invariance of each term.

(c) Briefly explain in a few sentences why one would fix gauge and why the gauge-fixed Lagrangian might contain ghost fields and an auxiliary Nakanishi-Lautrup field.

(d) BRST transformations acting on gauge (A^a_{μ}) , ghost $(c^a \text{ and } \bar{c}^a)$, and the auxiliary Nakanishi-Lautrup (B^a) fields are defined as

$$\delta_B A^a_\mu = \eta (D_\mu c)^a \qquad \qquad \delta_B c^a = -\frac{\eta g}{2} \varepsilon^{abc} c^b c^c$$
$$\delta_B \bar{c}^a = \eta B^a \qquad \qquad \delta_B B^a = 0 \,.$$

where η is a Grassmann-valued parameter. Show that these transformations are nilpotent when acting on any operator $O(A_{\mu}, c, \bar{c}, B)$ which is polynomial in those fields. [Hint: Consider two successive transformations with respective parameters η_1 and η_2 .]

END OF PAPER