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1

Let X be a Gaussian random element on L2[0, 1], such that E‖X‖2 <∞, EX = 0,
and suppose the covariance operator CX of X has covariance kernel

cX(t, s) = min(t, s)− ts, t, s ∈ [0, 1].

(i) Find the eigenfunctions, φk, and eigenvalues, λk, of CX .

(ii) Assume we have a Gaussian random element X1 with the same distribution as X,
and let

X1(t) =
∞∑

k=1

a1kφk(t), t ∈ [0, 1]

where a1k are univariate random variables. If we have observations of X1 at times
t1, t2 ∈ [0, 1], find the conditional expectation

E(a1k|X1(t1), X1(t2))

for a fixed k.

[You may use the conditional normal distribution formula without proof.]

2 Let X,X1, . . . , Xn be i.i.d. elements of L2[0, 1] with associated norm ‖ · ‖ such that
E‖X‖4 <∞, EX = µ, and with covariance operator CX . Also let X∗, X∗

1 , . . . , X
∗
n be i.i.d.

elements of L2[0, 1] such that E‖X∗‖4 <∞, EX∗ = µ∗ and with covariance operator CX∗ .
Also assume the two samples are independent of one another.

By considering the eigendecomposition of 1
2(CX + CX∗), for some K ∈ N find a

K-dimensional test to determine whether µ = µ∗. Determine its asymptotic properties,
as n→∞, under H0 : µ = µ∗ and under the alternative HA : µ 6= µ∗.

[You may assume that the first K eigenvalues of (CX +CX∗) are all distinct, and you may
also use without proof the convergence properties of eigenvalues, eigenfunctions and any
version of the central limit theorem].
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3 Let C1, . . . , Cn be covariance operators on a separable Hilbert Space.

(i) Define the square-root distance, dR, between two covariance operators and find

ĈR = argmin
C ∈ C

{
n∑

i=1

d2R(Ci, C)

}
,

where C is the space of covariance operators on the Hilbert space.

(ii) Suppose C1 = L1L
∗
1 and C2 = L2L

∗
2 where Li are operators on the Hilbert Space,

and where L∗i is the adjoint operator of Li. Show that L∗2L1 is trace class.

(iii) Define the Procrustes distance, dP , between two covariance operators and show that

d2P (C1, C2) = ‖L1‖2HS + ‖L2‖2HS − 2

∞∑

k=1

σk,

where σk are the singular values of L∗2L1, and where ‖ · ‖HS is the Hilbert-Schmidt
norm.

(iv) Let C1(·) =
∑∞

k=1 λk〈·, φk〉φk and C2(·) =
∑∞

k=1 λ
∗
k〈·, φk〉φk where φk is an

orthonormal basis of L2[0, 1] and λk, λ
∗
k ∈ R+, such that

∑∞
k=1 λk < ∞ and∑∞

k=1 λ
∗
k <∞.

Find the square-root and Procrustes distances between C1 and C2 and briefly
comment on the relationship between the two distances in this case.

Part III, Paper 225 [TURN OVER]



4

4 Let X, ε be independent random elements in L2[0, 1], such that E‖X‖2 < ∞,
EX = 0 and E‖ε‖2 <∞, Eε = 0, and define

Y (t) =

∫ 1

0
β(t, s)X(s)ds+ ε(t), t ∈ [0, 1],

where β(t, s) ∈ L2([0, 1]× [0, 1]).

(i) Suppose that the covariance operator of X is positive definite with eigenvalues /
eigenfunctions {λk, φk}∞k=1, and that the covariance operator of Y has eigenvalues
/ eigenfunctions {γl, ul}∞l=1. Also suppose that X =

∑∞
k=1 akφk and Y =

∑∞
l=1 blul

where ak and bl are univariate random variables. Show that

β(t, s) =

∞∑

k=1

∞∑

l=1

E(akbl)

λk
φk(s)ul(t), t, s ∈ [0, 1].

(ii) Show that the above expansion of β(t, s) does not change with the choice of sign of
the eigenfunctions φk and ul.

(iii) Let

R(t) =
Var(E(Y (t)|X))

Var(Y (t))
, t ∈ [0, 1].

Find an expression for R(t) in terms of the expansions of Y and X from part (i)
and show that this also does not depend on the choice of sign of the eigenfunctions.
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